3294 J. Phys. Chem. A, Vol. 107, No. 18, 2003
Sanrame et al.
(19) 2-Phenylethylchlorocarbene: (a) Tomioka, H.; Hayashi, N.; Sugiura,
T.; Izawa, Y. J. Chem. Soc., Chem. Commun. 1986, 1364. (b) Tomioka,
H.; Sugiura, T.; Masumoto, Y.; Izawa, Y.; Inagaki, S.; Iwase, K. J. Chem.
Soc., Chem. Commun. 1986, 693.
(20) (a) Bonneau, R.; Liu, M. T. H. J. Phys. Chem. A 2000, 104, 4115.
(b) Shustov, G. V.; Liu, M. T. H.; Houk, K. N. Can. J. Chem. 1999, 77,
540.
(21) 3-[(p-Nitrophenoxy)methyl]-3-chlorodiazirine is reported to be a
very stable and highly crystalline solid. Its X-ray structure analysis, including
electron density deformations, have been analyzed by: (a) Cameron, T. S.;
Bakshi, P. K.; Borecka, B.; Liu, M. T. H. J. Am. Chem. Soc. 1992, 114,
1889. (b) Kwiatkowski, W.; Bakshi, P. K.; Cameron, T. S.; Liu, M. T. H.
J. Am. Chem. Soc. 1994, 116, 5747.
(22) Selected crystal data. For 4b: C14H11ClN2, MW ) 242.70,
monoclinic, space group P21/c, a ) 8.4274(12) Å, b ) 5.6755(8) Å, c )
25.158(4) Å, â ) 96.963(3)°, V ) 1194.4(3) Å3, Z ) 4, Fcalcd ) 1.350
Mg/m3, F(000) ) 504, λ ) 0.71073 Å, µ(Mo KR) ) 0.296 mm-1, T )
100(2) K, crystal size ) 0.4 × 0.15 × 0.1 mm3. Of the 6572 reflections
collected (1.63 e θ e 28.25°), 2588 [R(int) ) 0.0275] were independent
reflections; max/min residual electron density +397 and -383 e nm-3, R1
) 0.0543 (I > 2σ(I)) and wR2 ) 0.1588 (all data).
(23) (a) Metrangolo, P.; Resnati, G. Chem. Eur. J. 2001, 7, 2511. (b)
Reddy, D. S.; Ovchinnikov, Y. E.; Shishkin, O. V.; Struchkov, Y. T.;
Desiraju, G. R. J. Am. Chem. Soc. 1996, 118, 4085.
(24) Keating, A. E.; Garcia-Garibay, M. A.; Houk, K. N. J. Am. Chem.
Soc. 1997, 119, 10805. 10809.
(25) (a) Wollrab, J. E.; Scharpen, L. H.; Douglas, M. J. Chem. Phys.
1969, 51, 1584. (b) Burkholder, D.; Jones, W. E.; Ling, K. W.; Wasson, J.
S. Theor. Chim. Acta 1989, 55, 325.
(26) A portion of the energy surface of diazirine 4b consisting of rotation
about the Cl-C(1)-C(2)-C(3) and C(1)-C(2)-C(3)-C(4) dihedrals was
investigated with the AM1 method using the Hyperchem package (Hyper-
chem Inc. Gainsville, Fl). These calculations suggest a flat potential with
a lowest energy anti-conformer having Cl-C(1)-C(2)-C(3) ) 180° and
close-lying syn-conformers with Cl-C(1)-C(2)-C(3) ) (75° that are only
1 kcal/mol above. These results are consistent with calculations reported
in ref 14. Please see Supporting Information.
(27) (a) Gavezzotti A.; Simonetta, M. Organic Solid State Chemistry;
Desiraju, G. R., Ed.; Elsevier: Netherlands, 1987; pp 391-432. (b)
Gavezzotti, A. Mol. Cryst. Liq. Cryst. 1988, 156A, 25. (c) Gavezzotti, A.;
Simonetta, M. Stud. Org. Chem. 1987, 32, 391.
4a-d, alkenes 6b-d, and azines 9a-c, X-ray acquisition and
refinement data for diazirine 4b, and contour diagram of the
AM1 conformational surface of 4b. This material is available
References and Notes
(1) (a) Garcia-Garibay, M. A.; Shin, S.; Sanrame, C. N. Tetrahedron
2000, 56, 6729. (b) Shin, S. H.; Cizmeciyan, D.; Keating, A. E.; Khan, S.
I.; Garcia-Garibay, M. A. J. Am. Chem. Soc. 1997, 119, 1859. (c) Shin, S.
H.; Constable, A. E.; Garcia-Garibay, M. A. J. Am. Chem. Soc. 1996, 118,
7626. (d) Motschiedler, K. R.; Gudmundsdottir, A.; Toscano, J. P.; Platz,
M. S.; Garcia-Garibay, M. A. J. Org. Chem. 1999, 64, 5139.
(2) (a) Doyle, M. P. In Chemistry of Diazirines; Liu, M. T. H., Ed.;
CRC Press: Boca Raton, FL, 1987; Vol. 2, Chapter 8, p 34. (b) Moss, R.
A.; Turro, N. J. In Kinetics and Spectroscopy of Carbenes and Biradicals;
Platz, M. S., Ed.; Plenum Press: New York, 1990; Chapter 7, p 213. (c)
Moss, R. A. In AdVances in Carbene Chemistry; Brinker, U. H., Ed.; JAI
Press: Stamford, CT, 1994; Vol. 1, p 59. (d) Bonneau, R.; Liu, M. T. H.
In AdVances in Carbene Chemistry; Brinker, U. H., Ed.; JAI Press:
Stamford, CT, 1998; Vol. 2, p 1. (e) Jackson, J. E.; Platz, M. S. AdVances
in Carbene Chemistry; Brinker, U. H., Ed.; JAI Press Inc.: New York,
1994; Vol. 1, pp 89-160. (f) Moss, R. A. Pure Appl. Chem. 1995, 67,
741-747.
(3) (a) Sander, W.; Bucher, G.; Wierlacher, S. Chem. ReV. 1993, 93,
1583-1621. (b) Sheridan, R. S. Org. Photochem. 1987, 8, 159-248.
(4) Compound 4a has been synthesized previously, and the reactivity
of carbene 5a has been studied in solution. (a) Naito, I.; Nakamura, K.;
Kumagai, T.; Oku, A.; Hori, K.; Matsuda, K.; Iwamura, H. J. Phys. Chem.
A 1999, 103, 8187. (b) Naito, I.; Oku, A.; Fijiwara, Y.; Tanimoto, Y. J.
Chem. Soc., Perkin Trans. 2 1999, 1051. (c) Naito, I.; Oku, A.; Otani, N.;
Fujiwara, Y.; Tanimoto, Y. J. Chem. Soc., Perkin Trans. 2 1996, 725.
(5) (a) Graham, W. H. J. Am. Chem. Soc. 1965, 87, 4396. (b) Schmitz,
E. In Chemistry of Diazirines; Liu, M. T. H., Ed.; CRC Press: Boca Raton,
FL, 1987; Vol. 1, Chapter 3, 57.
(6) (a) Moss, R. A.; Ma, W.; Merrer, D. C.; Xue, S. Tetrahedron Lett.
1995, 36, 8761. (b) Garigipati, R. S. Tetrahedron Lett. 1990, 31, 1969.
(7) For mechanistic details of the Graham oxidation, see: (a) Moss,
R. A.; Wlostowska, J.; Guo, W.; Fedorynski, M.; Springer, J. P.; Hirshfield,
J. M. J. Org. Chem. 1981, 46, 5048. (b) Berneth, H.; Hu¨nig, S. Chem. Ber.
1980, 113, 2040.
(8) Hoyle, J. In The Chemistry of Sulfones and Sulfoxides; Patai, S.,
Rapoport, Z., Stirling, C., Eds.; Wiley: Chichester, U.K., 1988; Chapter
21, p 969.
(28) Wash, P. L.; Ma, S.; Obst, U.; Rebek, J., Jr. J. Am. Chem. Soc.
1999, 121, 7973.
(29) Pines, A.; Gibby, M. G.; Waugh, J. S. J. Chem. Phys. 1973, 59,
569.
(9) For successful replacements of DMSO by MeOH see: (a) Rempala,
P.; Sheridan, R. S. J. Chem. Soc., Perkin Trans. 2 1999, 2257. (b) Yao, G.;
Rempala, P.; Bashore, C.; Sheridan, R. S. Tetrahedron Lett. 1999, 40, 17.
(10) Lee, G. A.; Freedman, H. H. Tetrahedron Lett. 1976, 1641.
(11) In a 50 mL round-bottom flask, 1 mmol of 7 was suspended in 12
mL of CH2Cl2 and 0.2 mmol of TBAHS was added. Under Vigorous
magnetic stirring, 12 mL of 1.0 M NaOH(aq) in saturated NaCl(aq) (from
dilution of 5 M NaOH with brine) was added. A solution containing 0.5
mL of t-BuOCl in 2 mL of CH2Cl2 was then added over a period of ca. 45
min until the N-chloro intermediate 8 disappeared. The deeply colored
biphasic emulsion was separated by decantation, and the aqueous layer was
extracted once with CH2Cl2. The combined organic extract was dried over
CaCl2 and passed through a short column of silica gel with CH2Cl2 to
remove the TBAHS. Purification by column chromatography (SiO2, pentane)
yielded the corresponding chlorodiazirine.
(12) 3-Benzyl-3-chlorodiazirine was prepared in 22% yield: Liu, M.
T. H.; Chishti, N. H.; Tencer, M.; Tomioka, H.; Izawa, Y. Tetrahedron
1984, 40, 887.
(13) 3-Chloro-3-(1-methyl-1-phenylethyl)diazirine was prepared in 5%
yield: Liu, M. T. H. J. Phys. Org. Chem. 1993, 6, 696.
(14) 3-Chloro-3-(phenyl-d5-methyl)diazirine was prepared in 12%
yield: Wierlacher, S.; Sander, W.; Liu, M. T. H. J. Am. Chem. Soc. 1993,
115, 8943.
(15) 3-(1-Naphthylmethyl)-3-chlorodiazirine is one of two 3-chlorodi-
azirines to have their X-ray structure determined (mp 41 °C). Linden, A.;
Cameron, T. S.; Liu, M. T. H.; Anand, S. M. J. Org. Chem. 1988, 53,
1085.
(30) For some general reviews of the CPMAS experiment, please see:
(a) Schaefer, J.; Stejskal, E. O. Top. Carbon-13 NMR Spectrosc. 1979, 3,
283. (b) Fyfe, C. A. Solid State NMR for Chemists; CFC Press: Guelph,
Ontario, 1983. (c) Yannoni, C. S. Acc. Chem. Res. 1982, 15, 201. (d) Lyerla,
J. R.; Yannoni, C. S.; Fyfe, C. A. Acc. Chem. Res. 1982, 15, 208.
(31) (a) Alemany, L. B.; Grant, D. M.; Alger, T. D.; Pugmire, R. J. J.
Am. Chem. Soc. 1983, 105, 6697. (b) Opella, S. J.; Frey, M. J. Am. Chem.
Soc. 1979, 101, 5854. (c) Opella, S. J.; Frey, M. H.; Cross, T. A. J. Am.
Chem. Soc. 1979, 101, 5856.
(32) Lyerla, J. R.; Yannoni, C. S.; Fyfe, C. A. Acc. Chem. Res. 1982,
15, 208-216.
(33) Hatakeyama, T.; Quinn, F. X. Thermal Analysis: Fundamentals and
Applications to Polymer Science; Wiley: Chichester, U.K., 1994; Chapter
2, p 5, and Chapter 5, p 65.
(34) Platz, M. S.; White, W. R.; Modarelli, D. A.; Celebi, S. Res. Chem.
Intermed. 1994, 20, 175.
(35) Keating, A. E.; Garcia-Garibay, M. A. Molecular and Supramo-
lecular Photochemistry; Ramamurthy, V., Schanze, K. S., Eds.; Dekker:
New York, 1998; Vol. 2, pp 195-248, and references therein.
(36) (a) Liu, M. T. H.; Bonneau, R.; Wierlacher, S.; Sander, W. J.
Photochem. Photobiol. A 1994, 84, 133.
(37) Jackson, J. E.; Soundararajan, N.; White, W.; Liu, M. T. H.;
Bonneau, R.; Platz, M. S. J. Am. Chem. Soc. 1989, 111, 6874.
(38) LaVilla, J. A.; Goodman, J. L. J. Am. Chem. Soc. 1989, 111, 6877.
(39) Studies with crystalline diphenyldiazomethane showed the first
example of azine formation in crystals: Doetschman, D. C.; Hutchison, C.
A., Jr. J. Chem. Phys. 1972, 56, 3964.
(40) (a) Keating, A. E.; Garcia-Garibay, M. A.; Houk, K. N. J. Phys.
Chem. 1998, 102, 8467. (b) Nickon, A. Acc. Chem. Res. 1993, 26, 84-89.
(c) Sugiyama, M. H.; Celebi, S.; Platz, M. S. J. Am. Chem. Soc. 1992, 114,
966-973. (d) Schaefer, H. F., III. Acc. Chem. Res. 1979, 12, 288-96.
(41) Shustov, G. V.; Liu, M. T. H.; Rauk, A. J. Phys. Chem. A 1997,
101, 2509.
(16) Solid samples of compounds 4a-d do not show noticeable changes
1
in the H and 13C NMR spectra after months of storage (-10 °C).
(17) (a) Liu, M. T. H.; Ramakrishan, K. Tetrahedron Lett. 1977, 36,
3139. (b) Padwa, A.; Eastman, D. J. Org. Chem. 1969, 34, 2728.
(18) Benzylchlorocarbenes: (a) Merrer, D. C.; Moss, R. A.; Liu, M. T.
H.; Banks, J. T.; Ingold, K. U. J. Org. Chem. 1998, 63, 3010. (b) Bonneau,
R.; Liu, M. T. H.; Kim, K. C.; Goodman, J. L. J. Am. Chem. Soc. 1996,
118, 3829. (c) Liu, M. T. H.; Bonneau, R. J. Am. Chem. Soc. 1990, 112,
3915. (d) Nigam, M.; Platz, M. S.; Sholwalter, B. M.; Toscano, J. P.;
Johnson, R.; Abbot, S. C.; Kirchhoff, M. M. J. Am. Chem. Soc. 1998, 120,
8055-8059.
(42) Tomioka, H.; Hayashi, N.; Izawa, Y.; Senthilnathan, V. P.; Platz,
M. S. J. Am. Chem. Soc. 1983, 105, 5053.
(43) Keating, A. E. Computational Studies of Carbene Reactions. Ph.D.
Thesis, University of California, Los Angeles, 1998.