L. Sabater et al. / Tetrahedron Letters 47 (2006) 569–571
571
´ `
The authors wish to thank Dr. Elodie Anxolabehere-
Mallart for fruitful discussions. C.H. acknowledges
Dr. S. Un and Dr. W. Rutherford, for allowing her to
complete the present work.
Supplementary data
Supplementary data associated with this article can be
References and notes
1. Rutherford, A. W.; Boussac, A.; Faller, P. Biochim.
Biophys. Acta 2004, 1655, 222–230.
2. Rutherford, A. W.; Boussac, A. Science 2004, 303, 1782–
1784.
3. Stubbe, J. In Advances in Enzymology and Related Areas in
Molecular Biology; Meister, A., Ed.; John Wiley and Sons:
New York, 1990; Vol. 63, pp 349–420.
Scheme 2. Condensation of primary amine 11 in MeOH.
4. Fontecave, M.; Nordlund, P.; Eklund, H.; Reichard, P. In
Advances in Enzymology and Related Areas in Molecular
Biology; Meister, A., Ed.; John Wiley and Sons: New
York, 1992; Vol. 65, pp 147–183.
5. Stubbe, J. Curr. Opin. Chem. Biol. 2003, 7, 183–187.
6. Stubbe, J.; van der Donk, W. A. Chem. Rev. 1998, 98,
705–762.
7. Goldberg, D. P.; Koulougliotis, D.; Brudvig, G. W.;
Lippard, S. J. J. Am. Chem. Soc. 1995, 117, 3134–3144.
8. Chang, C. J.; Chng, L. L.; Nocera, D. G. J. Am. Chem.
Soc. 2003, 125, 1866–1876.
9. Liu, S.-Y.; Nocera, D. G. J. Am. Chem. Soc. 2005, 127,
5278–5279.
encumbered di-tert-butyl phenol group. Both cyclic vol-
tammetry traces recorded in acetonitrile show an irre-
versible anodic process associated with the oxidation
of the di-tert-butyl phenol function at 1.11 V versus
SCE and 0.85 V versus SCE, respectively. This shift
can be tentatively assigned to a more pronounce polar-
isation of the O–H group in the presence of the Zn(II)
ion.20 Note that a test cyclic voltammogram on the
Zn(II) complex within the N4O only cavity indicates
that the oxidation of the coordinated phenol group is
observed at 1.18 V versus SCE within the same experi-
mental conditions. More electrochemical studies are cur-
rently undertaken to elucidate this issue.
´ `
10. Balland, V.; Banse, F.; Anxolabehere-Mallart, E.; Ghiladi,
M.; Mattioli, T. A.; Philouze, C.; Blondin, G.; Girerd, J.-J.
Inorg. Chem. 2003, 42, 2470–2477.
´ `
11. Hureau, C.; Sabater, L.; Anxolabehere-Mallart, E.; Nier-
`
lich, M.; Charlot, M.-F.; Gonnet, F.; Riviere, E.; Blondin,
2. Summary and conclusions
G. Chem. Eur. J. 2004, 10, 1998–2010.
12. Lachaud, F.; Quaranta, A.; Pellegrin, Y.; Dorlet, P.;
Charlot, M.-F.; Un, S.; Leibl, W.; Aukauloo, A. Angew.
Chem., Int. Ed. 2005, 44, 1536–1540.
13. Sabater, L.; Guillot, R.; Aukauloo, A. Tetrahedron Lett.
2005, 46, 2923–2926.
14. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
15. Ooi, T.; Maruoka, K.; Yamamoto, H. Org. Synth. 1995,
72, 95–103.
16. Lahti, P. M.; Liao, Y.; Julier, M.; Palacio, F. Synth. Met.
2001, 122, 485–493.
This type of ligand opens up a new coordination chem-
istry where bioinorganic chemists will be able to analyse
the properties and reactivities of metalloradical species
where the radical stands close to the metal centre but
not directly coordinated to the metal ion. Along this
line, manganese, iron and copper complexes with LH2
are currently underway in our laboratory.
17. Satoh, Y.; Shi, C. Synthesis 1994, 1146–1148.
18. Felix, A. M. J. Org. Chem. 1974, 39, 1427–1429.
19. Vickery, E. H.; Pahler, L. F.; Eisenbraun, E. J. J. Org.
Chem. 1979, 44, 4444–4446.
20. Mayer, J. M.; Rhile, I. J. Biochim. Biophys. Acta 2004,
1655, 51–58.
Acknowledgements
This work was supported by the CEA for the LRC pro-
ject (LRC-CEA No. 33V) and the European Commis-
sion for financial support (STRP SOLAR-H 516510).