salt (vide infra).10 White crystals: UV–VIS-data, λmax = 358 nm
(ε = 4.2 × 103 dm2 molϪ1), 376 nm (ε = 6.2 × 103 dm2 molϪ1) and
395 nm (ε = 5.2 × 103 dm2 molϪ1) in 2,2,4-trimethylpentane
(i-Oc).
Spectroscopic grade i-Oc, acetonitrile (MeCN) and pyrid-
ine were used without further purifications. Propionitrile
(EtCN), 2-methylpropionitrile (i-PrCN), 2,2-dimethylpropio-
nitrile (t-BuCN) and chloroacetonitrile (ClMeCN) were
purified by refluxing five times for 10 hours over diphosphorus
pentoxide. After purification, the solvents were distilled twice
under N2 stream. Benzonitrile (PhCN) was purified by distil-
lation under reduced pressure over diphosphorus pentoxide
three times. 2,3-Dimethylbut-2-ene (TME) was distilled twice
over calcium hydride. Dimethyl fumarate (MF) was purified by
recrystallization twice from ethanol. The viscosities of MeCN,
EtCN, i-PrCN, t-BuCN, PhCN and ClMeCN were measured at
293.1 K.
Laser flash photolysis
The laser flash photolysis (LFP) of BCD was carried out using
a Quanta-Ray GCR-11 (355 nm, 15 ns pulse, ca. 60 mJ). The
concentration of BCD was ca. 6 × 10Ϫ4 mol dmϪ3.
References
Fig. 7 Plots of log (kϪ1/k2) vs. TϪ1 in i-Oc (1) and in EtCN (2).
1 N. J. Turro, Y. Cha, I. R. Gould, A. Padwa and T. M. Gasdaska,
J. Org. Chem., 1985, 50, 4417; A. Padwa, J. R. Gasdaska, M. Tomas,
M. J. Turro, Y. Cha and I. R. Gould, J. Am. Chem. Soc., 1986, 108,
6739; N. J. Turro, Y. Cha and I. R. Gould, J. Am. Chem. Soc., 1987,
109, 2101.
2 (a) R. L. Barcus, B. B. Wright, M. S. Platz and J. C. Scaiano,
Tetrahedron Lett., 1983, 24, 3955; (b) R. L. Barcus, L. M. Hadel, L. J.
Johnstone, M. S. Platz, T. G. Savino and J. C. Scaiano, Chem. Phys.
Lett., 1983, 97, 446; (c) R. L. Barcus, L. M. Hadel, L. J. Johnston,
M. S. Platz, T. G. Savino and J. C. Scaiano, J. Am. Chem. Soc., 1986,
108, 3928.
3 J. J. Zupancic, P. B. Grasse, S. C. Lapin and G. B. Schuster,
Tetrahedron, 1983, 41, 1471.
4 (a) P. B. Grasse, B.-E. Brauer, J. J. Zupancic, K. J. Kaufmann and
G. B. Schuster, J. Am. Chem. Soc., 1983, 105, 6833; (b) D. Griller,
L. Hadel, A. S. Nazran, M. S. Platz, P. C. Wong, T. G. Savino and
J. C. Scaiano, J. Am. Chem. Soc., 1984, 106, 2227.
5 M. S. Platz and D. R. Olson, J. Phys. Org. Chem., 1996, 9, 689.
6 I. Naito, H. Morihara, A. Ishida, S. Takamuku, K. Isomura and
H. Taniguchi, Bull. Chem. Soc. Jpn., 1991, 64, 2757; I. Naito,
Y. Fujiwara, Y. Tanimoto, A. Ishida and S. Takamuku, Photochem.
Photobiol., 1995, 92, 73.
7 N. J. Turro, J. A. Butcher, R. A. Moss, W. Guo, R. C. Munjal and
M. Fedorynski, J. Am. Chem. Soc., 1980, 102, 7576; D. Griller,
M. T. H. Liu and J. C. Scaiano, J. Am. Chem. Soc., 1982, 104,
5549.
8 I. R. Gould, N. J. Turro, J. Butcher, Jr., C. Doubleday, Jr.,
N. P. Hacker, G. F. Lehr, R. A. Moss, D. P. Cox, W. Guo, R. C.
Munjal, L. A. Perez and M. Fedorynski, Tetrahedron, 1985, 41,
1587.
9 N. Soundarajan, J. E. Jackson and M. S. Platz, Tetrahedron Lett.,
1988, 29, 3419.
Fig. 8 Plot of log K[EtCN] vs. TϪ1
.
axis in Fig. 8 must be the term of [log (kϪ1/k2) Ϫ log f] and the
difference in the two relationships is log f. The fraction of
BCC, f, changes with temperature. Because LFP in EtCN was
carried out at different temperatures from those in i-Oc, the log
f value was obtained by means of the difference between the
ratio of the rate constants kϪ1/k2 in EtCN and the ratio deter-
mined by means of the relation in i-Oc. The molar ratio, [NY]/
[BCC] (=K[EtCN]), was calculated from log f value at each
temperature. When the term, log (K[EtCN]), was plotted
against TϪ1, a good linear dependence was obtained as shown in
Fig. 8. Because the EtCN concentration was constant in the
present study, the K value must increase with decreasing tem-
perature. The ∆H value derived from the K value was estimated
to be ca. Ϫ1.0 kcal molϪ1 from the slope of the linear relation in
Fig. 8. Although the thermodynamic parameter seems to be
changed by the solvent properties, the determined energy
depends chiefly on the free energy of the equilibrium constant.
10 I. Naito, A. Oku, Y. Fujiwara and Y. Tanimoto, J. Chem. Soc.,
Perkin Trans. 2, 1996, 725.
11 IR spectra of BCC were measured in the absence and in the presence
of MeCN in a ca. 15 K argon matrix. Measured IR bands in the
presence of MeCN agree well with heterocumulene-type NY
bands calculated by means of the MOPAC 6G-31G* basis set.
I. Naito, K. Nakamura, T. Kumagai, K. Matsuda, H. Iwamura,
K. Hori and A. Oku, unpublished results.
12 (a) I. Naito, Y. Fujiwara, Y. Tanimoto, A. Ishida and S. Takamuku,
J. Photochem. Photobiol., A: Chemistry, 1995, 92, 73; (b) I. Naito,
Y. Fujiwara, Y. Tanimoto, A. Ishida and S. Takamuku, Bull. Chem.
Soc. Jpn., 1995, 68, 2905.
13 J. A. Riddick, W. B. Bunger and T. K. Sakano, in Techiques of
Chemistry, vol. 2, Organic Solvents, Physical Properties and Methods
of Purification, 4th edn., John Wiley & Sons, New York, 1986;
pp. 119, 394.
14 (a) M. B. Jones and M. S. Platz, J. Org Chem., 1991, 56, 1694; (b)
M. B. Jones, V. M. Maloney and M. S. Platz, J. Am. Chem. Soc.,
1992, 114, 2163.
Experimental
Materials
(Biphenyl-4-yl)chlorodiazirine (BCD) was prepared from 4-
cyanobiphenyl via the corresponding 4-phenylbenzoamidine
J. Chem. Soc., Perkin Trans. 2, 1999, 1051–1056
1055