J. Am. Chem. Soc. 1996, 118, 4711-4712
4711
Scheme 1
An Ascending Synthesis of Adrenalcorticosteroids.
The Total Synthesis of (+)-Adrenosterone
Carolyn D. Dzierba, Kathleen S. Zandi,
Thomas Mo¨llers, and K. J. Shea*
Department of Chemistry, UniVersity of California
IrVine, California 92717-2025
ReceiVed January 24, 1996
Pharmaceutically useful steroids may be obtained by total
synthesis or by modification of readily available natural
steroids.1 The total synthesis route allows for enantiomer
selection2 as well as access to derivatives that may not be readily
available by degradation or functional group conversions. We
report a general strategy for the enantiospecific synthesis of the
steroid skeleton. The approach is demonstrated by the synthesis
of (+)-adrenosterone, an adrenalcorticosteroid.3
Scheme 2a
a (a) Br2, hν, CHCl3, 1 h; (b) aq NaOH, room temperature, 12 h,
87% (two steps); (c) methyl acrylate, cat. Pd(OAc)2, PPh3, NEt3,
CH3CN, reflux, 24 h, 60%; (d) oxalyl chloride, DMF, CH2Cl2, reflux,
1 h; (e) ethylene glycol, NEt3, CH2Cl2, 0 °C, 1 h, 97% (two steps); (f)
(-)-hydrobenzoin, NEt3, THF, room temperature, overnight, 70% (two
steps).
From a retrosynthetic perspective, an ascending strategy that
appends the C-ring to an A, B fragment (AB f ABC f ABCD)
utilizing a Diels-Alder construction represents a particularly
efficient approach to this important class of natural products.
The challenge entails control of regio-, stereo-, and π-facial
selectivity in the C-ring-forming step. Often, the requirements
for formation of the natural product countermand the intrinsic
bias of the cycloaddition reaction. Despite earlier efforts, this
strategy has not as yet been exploited in adrenalcorticoid
synthesis.4 Recent developments in controlling the stereo-
selectivity of the Diels-Alder reaction utilizing type 2 intra-
molecularity offered possible solutions to these problems.5
The strategy for the synthesis of (+)-adrenosterone is outlined
in Scheme 1. A key step in the synthesis utilizes a temporarily
union of diene and dienophile in a type 2 intramolecular Diels-
Alder (T2IMDA) reaction to form the C-ring of the steroid.5
The cycloaddition was designed to establish the four stereo-
centers in the BCD ring junctures (C8, C9, C13, and C14). In
addition, the strategy has the potential for exploiting the C19
methyl group to establish the correct absolute configuration at
the new centers.
entropically more favorable R,â-cycloaddition mode to deliver
the steroidal skeleton. Following removal of the temporary
tether and reduction of the R,â-unsaturated ester, completion
of the steroid relies upon Dieckmann cyclization/decarboxylation
to form the D-ring.
The diene precursor 4 for the Diels-Alder reaction was
prepared from (+)-Wieland-Miescher ketone by the procedure
of Swaminathan et al.6 Dienophile 6 was synthesized using a
Heck coupling protocol, Scheme 2. Methacrylic acid was
brominated in the presence of light followed by dehydrohalo-
genation with NaOH to give bromoacid 5 in 87% yield.
Palladium-mediated coupling of 5 with methyl acrylate afforded
diene acid 3 in 60% yield.7 Conversion to the acid chloride
with oxalyl chloride followed by quenching with excess ethylene
glycol afforded glycol ester 6 in 97% yield.8
The diene and dienophile fragments were then joined by a
temporary silyl acetal union, Scheme 3.9,10 Enone 4 was
kinetically deprotonated with KHMDS, trapped as the diphen-
ylchlorosilyl dienol ether, and quenched with glycol ester 6 to
give silyl acetal 2. The silyl acetal was taken directly into the
T2IMDA step without purification. The Diels-Alder reaction
was carried out in toluene at 200 °C for 35 h to afford a 1:10
mixture of diastereomers (8:9 respectively) in 90% yield from
4. The tether was removed with K2CO3 in MeOH to give the
corresponding ketones in a 1:10 ratio (10:11 respectively) in
84% yield. The diastereomers were separated, and their absolute
configurations were determined by X-ray crystallography.11 The
cycloadducts arose from exclusive tether endo attack of the
dienophile with complete regiochemical control (1,3 Vs 1,4 tether
Dienophile 3 installs the C18 methyl and the D-ring carbons.
To circumvent the low reactivity of the R,R,â-trisubstituted
dienophile, conjugation was extended through the carbomethoxy
group (3, Scheme 1). Although this ploy introduced ambiguity
in the chemoselectivity of the cycloaddition step (addition of
the diene to the R,â- Vs γ,δ-double bond), we relied upon the
(1) (a) Fieser, L. F.; Fieser, M. Steroids; Reinhold Publishing Corp.: New
York, 1959. (b) Akhrem, A. A.; Titov, Y. A. Total Steroid Synthesis;
Plenum: New York, 1970.
(2) (a) Rychnovsky, S. D.; Mickus, D. E. J. Org. Chem. 1992, 57, 2732.
(b) Mickus, D. E.; Levitt, D. G.; Rychnovsky, S. D. J. Am. Chem. Soc.
1992, 114, 359.
(3) For previous syntheses, see: (a) Velluz, L.; Nomine´, G.; Mathieu,
J.; Toromanoff, E.; Bertin, D.; Bucourt, R.; Tessier, J. Compt. Rendu 1960,
250, 1293. (b) Stork, G.; Winkler, J. D.; Shiner, C. S. J. Am. Chem. Soc.
1982, 104, 3767. (c) Stork, G.; Saccomano, N. A. Tetrahedron Lett. 1987,
28, 2087. (d) Van Royen, L. A.; Mijngheer, R.; De Clercq, P. J. Tetrahedron
1985, 41, 4667. (e) Kametani, T.; Matsumoto, H.; Honda, T.; Nagai, M.;
Fukumoto, K. Tetrahedron 1981, 37, 2555. (f) Horiguchi, Y.; Nakamura,
E.; Kuwajima, I. J. Am. Chem. Soc. 1989, 111, 6257.
(6) (a) Swaminathan, S.; Newman, M. S. Tetrahedron 1958, 2, 88. (b)
Ramakrishnan, V. T.; Ramachandran, S.; Venkataramani, P. S.; Swami-
nathan, S. Tetrahedron 1967, 23, 2453. (c) Darvesh, S.; Grant, A. S.; MaGee,
D. I.; Valenta, Z. Can. J. Chem. 1989, 67, 2237. (d) Swaminathan, S.;
Narayanan, K. V. Chem. ReV. 1971, 71, 429.
(4) (a) Nazarov, I. N.; Gurvich, I. A. IzV. Akad. Nauk. SSSR, Otd. Khim.
Nauk. 1959, 293. (b) Anner, G.; Miescher, K. HelV. Chim. Acta 1950, 33,
1379.
(7) Heck, R. F. Org. React. 1982, 27, 345.
(5) For examples of the type 2 intramolecular Diels-Alder reaction,
see: (a) Shea, K. J.; Wise, S J. Am. Chem. Soc. 1978, 100, 6519. (b) Shea,
K. J.; Beauchamp, P. S.; Lind, R. J. Am. Chem. Soc. 1980, 102, 4544. (c)
Shea, K. J.; Wise, S.; Burke, L. D.; Davis, P. D.; Gilman, J. W.; Greeley,
A. C. J. Am. Chem. Soc. 1982, 104, 5708. (d) Shea, K. J.; Wada, E. J. Am.
Chem. Soc. 1982, 104, 5715. (e) Shea, K. J.; Davis, P. D. Angew. Chem.,
Int. Ed. Engl. 1983, 22, 419; Angew. Chem. Suppl. 1983, 564-570. (f)
Shea, K. J.; Burke, L. D.; England, W. P. J. Am. Chem. Soc. 1988, 110,
860. (g) Shea, K. J.; Lease, T. G.; Ziller, J. W. J. Am. Chem. Soc. 1990,
112, 8627. (h) Lease, T. G.; Shea, K. J. J. Am. Chem. Soc., 1993, 115,
2248.
(8) This compound gave spectral (1H, 13C, IR) and analytical (HRMS)
data consistent with the assigned structure.
(9) (a) Shea, K. J.; Zandi, K. S.; Staab, A. J.; Carr, R. Tetrahedron Lett.
1990, 31, 5885. (b) Shea, K. J.; Staab, A. J.; Zandi, K. S. Tetrahedron
Lett. 1991, 32, 2715.
(10) (a) Craig, D.; Reader, J. C. Tetrahedron Lett. 1990, 31, 6585. (b)
Craig, D.; Reader, J. C. Tetrahedron Lett. 1992, 33, 4073. (c) Gillard, J.
W.; Fortin, R.; Grimm, E. L.; Maillard, M.; Tjepkema, M.; Bernstein, M.
A.; Glaser, R. Tetrahedron Lett. 1991, 32, 1145. (d) Posner, G. H.; Cho,
C.-G.; Anjeh, T. E. N.; Johnson, N.; Horst, R. L.; Kobayashi, T.; Okano,
T.; Tsugawa, N. J. Org. Chem. 1995, 60, 4617.
S0002-7863(96)00250-8 CCC: $12.00 © 1996 American Chemical Society