10.1002/anie.202008512
Angewandte Chemie International Edition
COMMUNICATION
(Scheme 4). The compatibility of the sodium alkyl 4 with THF is
remarkable, just as its catalytic activity contrast with the sluggish
reactivities reported for sodium catalysed hydroamination using
Na metal or NaH as catalysts.[2a]
[2]
(a) T. E. Müller, K. C. Hultzsch, M. Yus, F. Foubelo, M. Tada, Chem. Rev.
2008, 108, 3795–3892; (b) J. Seayad, A. Tillack, C. G. Hartung, M. Beller,
Adv. Synth. Catal. 2002, 344, 795–813; (c) M. C. Wood, D. C. Leitch, C.
S. Yeung, J. A. Kozak, L. L. Schafer, Angew. Chem. Int. Ed. 2007, 46,
354–358; (d) G. Tran, W. Shao, C. Mazet, J. Am. Chem. Soc. 2019, 141,
14814–14822; (e) D. C. Miller, J. M. Ganley, A. J. Musacchio, T. C.
Sherwood, W. R. Ewing, R. R. Knowles, J. Am. Chem. Soc. 2019, 141,
16590–16594; (f) S. B. Herzon, J. F. Hartwig, J. Am. Chem. Soc. 2007,
129, 6690–6691; (g) R. Kubiak, I. Prochnow, S. Doye, Angew. Chem. Int.
Ed. 2009, 48, 1153–1156; (j) M. Beller, M. Eichberger, H. Trauthwein,
Angew. Chem. Int. Ed. 1997, 36, 2225–2227.
[3]
(a) K. Kumar, D. Michalik, I. Garcia Castro, A. Tillack, A. Zapf, M. Arlt, T.
Heinrich, H. Böttcher, M. Beller, Chem. Eur. J. 2004, 10, 746–757; (b) P.
Horrillo-Martínez, K. C. Hultzsch, A. Gil, V. Branchadell, Eur. J. Org.
Chem. 2007, 2007, 3311–3325; (c) S. Germain, M. Lecoq, E. Schulz, J.
Hannedouche, ChemCatChem 2017, 9, 1749–1753; (d) R. J. Schlott, J.
C. Falk, K. W. Narducy, J. Org. Chem. 1972, 37, 4243–4245; (e) J.
Deschamp, J. Collin, J. Hannedouche, E. Schulz, Eur. J. Org. Chem.
2011, 2011, 3329–3338; (f) J. Hannedouche, E. Schulz, Chem. Eur. J.
2013, 19, 4972–4985.
[4]
[5]
L. Davin, A. Hernán-Gómez, C. McLaughlin, A. R. Kennedy, R. McLellan,
E. Hevia, Dalton Trans. 2019, 48, 8122–8130.
(a) R. E. Mulvey, S. D. Robertson, Angew. Chem. Int. Ed. 2013, 52,
11470–11487; (b) A. Pouilhès, J.-P. Baltaze, C. Kouklovsky, Synlett
2013, 24, 1805–1808.
Scheme 4. Sodium catalysed hydroamination of vinyl arenes 1c, 1d and 1l with
amines 2a-d and 2f-2h. Conversions determined by NMR spectroscopy using
ferrocene as internal standard (see SI for details); yields of isolated products
shown in brackets.
[6]
[7]
J. Swarbrick, J. C. Boylan, Encyclopedia of Pharmaceutical Technology,
Dekker: New York 1988, pp 110–116.
(a) S. Monticelli, L. Castoldi, I. Murgia, R. Senatore, E. Mazzeo,
J .Wackerlig, E. Urban, T. Langer, V. Pace, Monatsh. Chem. 2017, 148,
37–48; (b) V. Pace, P. Hoyos, L. Castoldi, P. Domínguez de María, A. R.
Alcántara, ChemSusChem 2012, 5, 1369–1379; (c) V. Pace, Aus. J.
Chem. 2012, 65, 301–302; (d) D. F. Aycock, Org. Process Res. Dev.
2007, 11, 156–159.
(a) P. Lei, Y. Ling, J. An, S. Nolan, M. Szostak, Adv. Synth. Catal. 2019,
361, 5654–5660. (b) S. Monticelli, L. Castoldi, I. Murgia, R. Senatore, E.
Mazzeo, J. Wackerlig, E. Urban, T. Langer, V. Pace, Monatsh. Chem.
2017, 148, 37–48; (c) D. F. Aycock, Org. Process Res. Dev. 2007, 11,
156–159.
To summarise, surprisingly we found that performing alkali-metal-
amide-executed intermolecular hydroamination reactions under
air can be accelerated by moisture from ambient air, instead of
being destroyed by its presence. This observation has led to the
development of an exceptionally simple procedure for vinylarene
hydroamination. Ambient moisture generates a steady supply of
the necessary free amine to coordinate and so activate the alkali-
metal amides then to quench the addition products. Formation of
small kinetically activated aggregates of the metal amides seems
to be key to enable hydroamination under these unconventional
reaction conditions.
[8]
[9]
M. Fairley, L. J. Bole, F. F. Mulks, L. Main, A. R. Kennedy, C. T. O’Hara,
J.
García-Alvarez,
E.
Hevia,
Chem.
Sci.,
2020,
DOI:
10.1039/D0SC01349H.
[10] (a) V. Snieckus, M. Rogers-Evans, Lithium Piperidide. In: e-EROS
Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Ltd.
Chichester 2001, pp 1–2; (b) N. Monck, P. Timm, Lithium
Dicyclohexylamide. In: e-EROS Encyclopedia of Reagents for Organic
Synthesis, John Wiley & Sons, Ltd. Chichester 2005, pp 1–2.
[11] M. S. Hill, D. J. Liptrop, C. Wheetman, Chem. Soc. Rev. 2016, 45, 972.
[12] (a) D. W. Slocum, C. A. Jennings, J. Org. Chem. 1976, 41, 3653–3664;
(b) A. G. M. Barrett, C. Brinkmann, M. R. Crimmin, M. S. Hill, P. Hunt, P.
A. Procopiou, J. Am. Chem. Soc. 2009, 131, 12906–12907.
[13] (a) C. Brinkmann, A. G. M. Barrett, M. S. Hill, P. A. Procopiou, J. Am.
Chem.Soc. 2012, 134, 2193–2207; (b) M. De Tullio, A. Hernán-Gómez,
Z. Livingstone, W. Clegg, A. R. Kennedy, R. W. Harrington, A. Antiñolo,
A. Martínez, F. Carrillo-Hermosilla, E. Hevia, Chem. Eur. J. 2016, 22,
17646–17656.
Experimental Section
Full experimental details and copies of NMR spectra are included in the
Supporting Information.
[14] X-ray crystallographic studies have already shown that LiPip can form a
coordination adduct with PipH, see G. Boche, I. Langlotz, M. Marsch, K.
Harms, N. E. S. Nudelman, Angew. Chem. Int. Ed. 1992, 31, 1205–1207.
[15] G. Ndebeka, P. Caubère, S. Raynal, S. Lécolier, Polymer 1981, 22, 347–
355; (b) G. Ndebeka, P. Caubère, S. Raynal, S. Lécolier, Polymer 1981,
22, 356–360; (c) S. Carlotti, P. Desbois, V. Warzelhan, A. Deffieux,
Polymer 2009, 50, 3057–3067; (d) A. C. Angood, S. A. Hurley, P. J. Tait, ,
J. Polym. Sci. Pol. Chem. 1973, 11, 2777–2791.
[16] In recent studies comparing the constitution of lithium anilides in THF and
Me-THF we have shown that in all cases the same level of aggregation
and solvation is observed in both solvents (see reference [9]).
Considering also the greater solubility of lithium amides in 2-MeTHF in
Acknowledgements
We thank Robert Mulvey and Marina Uzelac for useful comments.
Funding by the UK’s Engineering and Physical Sciences
Research Council (Grant number EP/S020837/1), ERC-Stg
MixMetApps and the University of Bern is also acknowledged.
comparison with THF, formation of
monomer can be proposed.
a similar [Li(Pip)(2-Me-THF)3]
Keywords: s-block metals • hydroamination • solvent effects •
air/moisture compatible • Lithium •catalysis
[17] For other examples of Na amide ladder structures see: (a) W. Clegg, K.
Henderson, L. Horsburgh, F. M. Mackenzie, R. E. Mulvey. Chem. Eur. J.
1998, 4, 53 – 56; (b) N. Kuhn, G. Henkel, J. Kreutzberg, Angew. Chem.
Int. Ed. 1990, 29, 1143-1144; (c) D. R. Baker, R. E. Mulvey, W. Clegg, P.
A. O’Neil, J. Am. Chem. Soc. 1993, 115, 6472-6473.
[18] This structure complies with the ring-laddering principle, see (a) D. R.
Armstrong, D. Barr, W. Clegg, R. E. Mulvey, D. Reed, R. Snaith, K. Wade,
Chem. Commun., 1986, 869; (b) R. E. Mulvey, Chem. Soc. Rev., 1991,
20, 167 (c) R. E. Mulvey, Chem. Soc. Rev., 1998, 27, 339.
[1]
(a) G. Osztrovszky, T. Holm, R. Madsen, Org. Biomol. Chem. 2010, 8,
3402–3404; (b) M. J. Rodriguez-Alvarez, J. Garcia-Alvarez, M. Uzelac,
M. Fairley, C. T. O'Hara, E. Hevia, Chem. Eur. J. 2018, 24, 1720–1725;
(c) C. Vidal, J. Garcia-Alvarez, A. Hernan-Gomez, A. R. Kennedy, E.
Hevia, Angew. Chem. Int. Ed. 2014, 53, 5969–5973; (d) C. Vidal, J.
Garcia-Alvarez, A. Hernan-Gomez, A. R. Kennedy, E. Hevia, Angew.
Chem. Int. Ed. 2016, 55, 16145-16148; (e) A. Sánchez-Condado, G. A.
Carriedo, A. Presa Soto, M. J. Rodríguez-Álvarez, J. García-Álvarez, E.
Hevia, ChemSusChem 2019, 12, 3134–3143; (f) F. P. Perna, P. Vitale,
V. Capriati, Curr. Opin. Green Sustain. Chem. 2020, 21, 27–33; (g) L.
Cicco, S. Sblendorio, R. Mansueto, F.M. Perna, A. Salomone, S. Florio,
V. Capriati Chem. Sci. 2016, 7, 1192–1199.
This article is protected by copyright. All rights reserved.