5142
J. Am. Chem. Soc. 1996, 118, 5142-5143
and unique feature of our catalysts is the ability to tolerate
â-substituents in both (E)- and (Z)-positions of enamides 1, thus
allowing the production of a diverse array of R-1-arylalkyl-
amines 2 through hydrogenation of isomeric mixtures of
enamide substrates.
A Convenient Asymmetric Synthesis of
r-1-Arylalkylamines through the Enantioselective
Hydrogenation of Enamides
Mark J. Burk,* Yan Ming Wang, and Jeffrey R. Lee
Department of Chemistry, Duke UniVersity
P. M. Gross Chemical Laboratory
Durham, North Carolina 27708
ReceiVed NoVember 17, 1995
Optically active R-1-arylalkylamines constitute an important
class of compounds that have been employed extensively as
resolving agents,1 chiral auxiliaries, and intermediates in the
synthesis of a wide range of biologically active molecules.2 The
broad utility of R-1-arylalkylamine derivatives has stimulated
relentless pursuit of practical asymmetric routes to these valuable
compounds. In this regard, many reliable synthetic methods
have been devised and generally involve optical resolution
procedures, biocatalytic methods, or stoichiometric use of chiral
precursors or chiral auxiliaries.1-5 Asymmetric catalytic reduc-
tion of CdN or CdC double bonds potentially could provide a
very efficient and convenient route to many chiral amine
derivatives, yet only limited success has been achieved along
these lines of research.6,7 While very high enantioselectivities
have been attained in the hydrogenation of R-enamide esters,8
the development of similarly effective catalysts for asymmetric
hydrogenation of R-arylenamides of type 1 has remained a
challenging objective.9 Toward this goal, we have found that
cationic Rh catalysts based on our 1,2-bis(trans-2,5-dimeth-
ylphospholano)benzene (Me-DuPHOS) and 1,2-bis(trans-2,5-
dimethylphospholano)ethane (Me-BPE) ligands effect the hy-
drogenation of N-acetyl R-arylenamides (1, R ) H) to yield a
wide variety of valuable R-1-arylethylamine derivatives with
high enantioselectivities (g90% ee). Moreover, an important
We recently have shown that Rh and Ru catalysts bearing
our DuPHOS or BPE ligands are extremely effective for
enantioselective hydrogenation of a variety of prochiral unsatur-
ated substrates.10 These studies have highlighted an important
advantage of our ligand design; the ability to readily vary the
phospholane 2,5-substituents has allowed us to optimize enan-
tioselectivities by matching the ligand sterics to the steric
demands of substrates of interest. In an effort to develop a
general asymmetric catalytic method for the preparation of R-1-
arylalkylamines, we initially screened a series of Rh and Ru
catalysts for efficacy in the hydrogenation of the model
R-arylenamide 1a (Ar ) C6H5, R ) H). We found that under
a standard set of reaction conditions (MeOH, 22 °C, 60 psi H2,
S/C ) 500, 12 h) cationic Rh complexes of the type
[(COD)Rh(DuPHOS)]+OTf- and [(COD)Rh(BPE)]+OTf- be-
have as efficient catalyst precursors for the reduction of enamide
1a. Moreover, we observed that enantioselectivities tended to
increase with decreasing steric demand of the DuPHOS and
BPE ligands (phospholane 2,5-susbtituents ) Me, Et, Pr, i-Pr,
Cy). This trend suggests that enamides 1 are rather sterically
demanding substrates and in fact, more sterically demanding
than standard R-enamide esters.10c,f Thus, hydrogenation of 1a
using the (S,S)-Me-DuPHOS-Rh catalyst afforded the product,
N-acetyl-R-phenethylamine (2a), in 94.7% ee and (S) absolute
configuration. Within the analogous series of BPE-Rh catalysts,
(R,R)-Me-BPE-Rh provided (R)-2a with the highest enantiose-
lectivity (95.2% ee). By comparision, directly analogous Rh
catalysts bearing other well-known chiral diphosphines led to
significantly lower enantioselectivities in the reduction of 1a
in MeOH under our prototypical conditions: (R)-BINAP (15.1%
ee), (S,S)-CHIRAPHOS (40.7% ee), (R,R)-SKEWPHOS (7.1%
ee), and (R,R)-DIOP (56.6% ee). Similarly, a Ru-BINAP
catalyst derived from (R)-BINAP-RuBr2 produced (S)-2a with
low enantioselectivity (53.7% ee).
(1) Jacques, J.; Collet, A.; Wilen, S. H. Enantiomers, Racemates, and
Resolutions; John Wiley and Sons: New York, 1981.
(2) No´gra´di, M. StereoselectiVe Synthesis, 2nd Ed.; VCH: Weinheim,
Germany, 1995.
(3) (a) Enders, D.; Shubert, H.; Nubling, C. Angew. Chem., Int. Ed. Engl.
1986, 25, 1109. (b) Denmark, S. E.; Weber, T.; Piotrowski, D. W. J. Am.
Chem. Soc. 1987, 109, 2224. (c) Gawley, R. E.; Rein, K.; Chemburkar, S.
J. Org. Chem. 1989, 54, 3002. (d) Wu, M.-J.; Pridgen, L. N. J. Org. Chem.
1991, 56, 1340. (d) Pridgen, L. N.; Mokhallalati, M. K.; Wu, M.-J. J. Org.
Chem. 1992, 57, 1237. (e) Itsuno, S.; Sasaki, M.; Kuroda, S.; Ito, K.
Tetrahedron: Asymmetry 1995, 6, 1507.
(4) Representative optical resolution procedures: (a) Newman, P. Optical
Resolution Procedures for Chemical Compounds; O.R.I.C., Manhattan
College Press: New York, 1978; Vol 1. (b) Hoeve, W. T.; Wynberg, H. J.
Org. Chem. 1985, 50, 4508. (c) Westley, J. W.; Evans, R. H., Jr.; Blount,
J. F. J. Am. Chem. Soc. 1977, 99, 6057. (d) Gharpure, M. M.; Rao, A. S.
Synthesis 1988, 410.
(5) For enzymatic resolution procedures, see: (a) Stirling, D. I. In
Chirality in Industry; Collins, A. N., Sheldrake, G. N., Crosby, J., Eds.;
John Wiley and Sons: New York, 1992; pp 209-222. (b) Rossi, D.;
Calcagni, A.; Romeo, A. J. Org. Chem. 1979, 44, 2222.
(6) (a) Landor, S. R.; Chan, Y. M.; Sonola, O. O.; Tatchell, A. R. J.
Chem. Soc., Perkin Trans. 1 1984, 493. (b) Itsuno, S.; Nakano, M.;
Miyazaki, K.; Masuda, H.; Ito, K.; Hirao, A.; Nakahama, S. J. Chem. Soc.,
Perkin Trans 1 1985, 2039. (c) Cho, B. T.; Chun, Y. S. J. Chem. Soc.,
Perkin Trans. 1 1990, 3200. (d) Kawate, T.; Nakagawa, M.; Kakikawa, T.;
Hino, T. Tetrahedron: Asymmetry 1992, 3, 227. (e) Sreekumar, R.; Pillai,
C. N. Tetrahedron: Asymmetry 1993, 4, 2095.
(7) (a) Chan, Y. N.; Osborn, J. A. J. Am. Chem. Soc. 1990, 112, 9400.
(c) Spindler, F.; Pugin, B.; Blaser, H.-U. Angew. Chem., Int. Ed. Engl. 1990,
29, 558. (c) Becalski, A. G.; Cullen, W. R.; Fryzuk, M. D.; James, B. R.;
Kang, G.-J.; Rettig, S. J. Inorg. Chem. 1991, 30, 5002. (d) Bakos, J.; Orosz,
A.; Heil, B.; Laghmari, M.; Lhoste, P.; Sinou, D. J. Chem. Soc., Chem.
Commun. 1991, 1684. (e) Willoughby, C. A.; Buchwald, S. L. J. Am. Chem.
Soc. 1994, 116, 8952. (f) Burk, M. J.; Martinez, J. P.; Feaster, J. E.; Cosford,
N. Tetrahedron 1994, 50, 4399.
Enantioselectivities attained in the present hydrogenations
were found to be relatively insensitive to solvent. For example,
similar ee’s were achieved in the Me-DuPHOS-Rh-catalyzed
reduction of 1a: MeOH (94.7% ee), C6H6 (94.3% ee), EtOAc
(95.7% ee), i-PrOH (95.8% ee), THF (91.4% ee), and CF3CH2-
OH (91.8% ee). In general, high ee’s were achieved consistently
in either the protic solvent MeOH or the aprotic EtOAc, thus
allowing the reaction to be conducted in two solvents with rather
different properties. Likewise, minor pressure variations had
little effect on selectivities in the hydrogenation of 1a using
the Me-DuPHOS-Rh catalyst in MeOH; ee’s varied by e1.5%
ee over the pressure range 10-90 psi.
The general utility of the Me-DuPHOS-Rh and Me-BPE-Rh
catalysts was revealed through production of a panoply of R-1-
(8) (a) Ojima, I., Ed. Catalytic Asymmetric Synthesis; VCH Publishers:
Weinheim, 1993;, Chapter 2. (b) Noyori, R. Asymmetric Catalysis in
Organic Synthesis; Wiley & Sons: New York, 1994; Chapter 2.
(9) (a) Kagan, H. B.; Langlois, N.; Dang, T. P. J. Organomet. Chem.
1975, 90, 353. (b) Sinou, D.; Kagan, H. B. J. Organomet. Chem. 1976,
114, 325. (c) Morimoto, T.; Chiba, M.; Achiwa, K. Chem. Pharm. Bull.
1992, 40, 2894. (d) See also: Lee, N. E.; Buchwald, S. L. J. Am. Chem.
Soc. 1994, 116, 5985.
(10) (a) Burk, M. J. J. Am. Chem. Soc. 1991, 113, 8518. (b) Burk, M.
J.; Feaster, J. E. J. Am. Chem. Soc. 1992, 114, 6266. (c) Burk, M. J.; Feaster,
J. E.; Nugent, W. A.; Harlow, R. L. J. Am. Chem. Soc. 1993, 115, 10125.
(d) Burk, M. J.; Harper, T. G. P.; Kalberg, C. S. J. Am. Chem. Soc. 1995,
117, 4423-4424. (e) Burk, M. J.; Feng, S.; Gross, M. F.; Tumas, W. J.
Am. Chem. Soc. 1995, 117, 8277. (f) Burk, M. J.; Gross, M. F.; Martinez,
J. P. J. Am. Chem. Soc. 1995, 117, 9375.
S0002-7863(95)03872-8 CCC: $12.00 © 1996 American Chemical Society