5 D. C. Koester, A. Holkenbrink and D. B. Werz, Synthesis, 2010,
3217–3242.
6 (a) R. Chhabra Siri, S. A. Rahim Aisyah and B. Kellam, Mini-Rev. Med.
Chem., 2003, 3, 679–687; (b) N. Kaila, L. Chen, B. E. Thomas, D. Tsao,
S. Tam, P. W. Bedard, R. T. Camphausen, J. C. Alvarez and G. Ullas,
J. Med. Chem., 2002, 45, 1563–1566; (c) T. P. Kogan, B. Dupre,
K. M. Keller, I. L. Scott, H. Bui, R. V. Market, P. J. Beck,
J. A. Voytus, B. M. Revelle and D. Scott, J. Med. Chem., 1995, 38,
4976–4984; (d) G. Thoma, J. L. Magnani, J. T. Patton, B. Ernst and
W. Jahnke, Angew. Chem., Int. Ed., 2001, 40, 1941–1945; (e)B. Ernstand
J. L. Magnani, Nat. Rev. Drug Discovery, 2009, 8, 661–677;
(f) P. V. Murphy, Eur. J. Org. Chem., 2007, 4177–4187; (g) E. E.
Simanek, G. J. McGarvey, J. A. Jablonowski and C.-H. Wong, Chem.
Rev., 1998, 98, 833–862.
7 (a) Y. Du, R. J. Linhardt and I. R. Vlahov, Tetrahedron, 1998, 54,
9913–9959; (b) C. Jaramillo and S. Knapp, Synthesis, 1994, 1–20; (c) M.
H. D. Postema, J. L. Piper, V. Komanduri and L. Liu, Angew. Chem.,
Int. Ed., 2004, 43, 2915–2918; (d) A. Dondoni, A. Marra, M. Mizuno
and P. P. Giovannini, J. Org. Chem., 2002, 67, 4186–4199;
(e) D. C. Koester, M. Leibeling, R. Neufeld and D. B. Werz, Org. Lett.,
2010, 12, 3934–3937; (f) B. Giese, M. Hoch, C. Lamberth and
R. R. Schmidt, Tetrahedron Lett., 1988, 29, 1375–1378.
Scheme 6 Reagents and conditions: (a) Cp*Ru(COD)Cl, DMA,
100 1C, 120 W, 76%; (b) Cp*Ru(COD)Cl, DMA, 100 1C, 120 W,
60%; (c) CuI, DMF, EtNiPr2, 80 1C, 120 W, 75%.
8 (a) T. Matsumoto, M. Katsuki and K. Suzuki, Tetrahedron Lett.,
1988, 29, 6935–6938; (b) E. R. Palmacci, O. J. Plante and
P. H. Seeberger, Eur. J. Org. Chem., 2002, 595–606;
(c) J. A. Mahling and R. R. Schmidt, Synthesis, 1993, 325–328;
(d) S. Weck and T. Opatz, Synthesis, 2010, 2393–2398.
9 R. R. Schmidt, J. Michel and M. Roos, Liebigs Ann. Chem., 1984,
1343–1357.
10 Y. Li, G. Wei and B. Yu, Carbohydr. Res., 2006, 341, 2717–2722.
11 M. Mori, Y. Ito and T. Ogawa, Carbohydr. Res., 1990, 195, 199–224.
12 C- and O-mannosides have been used as fucose substitutes in sialyl
LewisX mimetics, see ref. 6g.
2-iodobenzoyl chloride gives benzamide 21, the Sonogashira
reaction of which with glycosylacetylenes 12 and 17 yields alkynes
22 and 23, respectively. Presumably due to the steric repulsion
between both hexose residues, (alkylidene)isoindolinones
24 and 25 resulting from a 5-exo-dig cyclization are exclusively
formed while the 6-endo-dig reaction with formation
of 2,3-diglycosylated isoquinoline-1-ones was never observed
(Scheme 5).23,24
As in other sterically demanding a-C-glycosides,8d the
fucose residue in 24 and the mannose residue in 25 preferably
adopt the respective ring-inverted conformation.
13 T.-H. Lee, G.-J. Wang, C.-K. Lee, Y.-H. Kuo and C.-H. Chou,
Planta Med., 2002, 68, 492–496.
14 (a) M. Schnabel, B. Rompp, D. Ruckdeschel and C. Unverzagt,
Tetrahedron Lett., 2004, 45, 295–297; (b) D. Mukherjee,
S. K. Sarkar, U. S. Chowdhury and S. C. Taneja, Tetrahedron
Lett., 2007, 48, 663–667.
15 S. Y. Mel’nik, A. A. Bakhmedova, L. D. Garaeva, T. D. Miniker,
I. L. Plikhtyak, L. V. Ektova, T. P. Ivanova, V. M. Adanin and
I. V. Yartseva, Bioorg. Khim., 1996, 22, 832–837.
16 S. Messaoudi, M. Sancelme, V. Polard-Housset, B. Aboab, P. Moreau
and M. Prudhomme, Eur. J. Med. Chem., 2004, 39, 453–458.
17 (a) T. Nishikawa, Y. Koide, S. Kajii, K. Wada, M. Ishikawa and
M. Isobe, Org. Biomol. Chem., 2005, 3, 687–700; (b) S. Manabe,
Y. Ito and T. Ogawa, Chem. Lett., 1998, 919–920.
18 (a) A. Dondoni, G. Mariotti and A. Marra, Tetrahedron Lett.,
2000, 41, 3483–3487; (b) A. Dondoni, G. Mariotti and A. Marra,
J. Org. Chem., 2002, 67, 4475–4486.
19 J. Kerekgyarto, J. P. Kamerling, J. B. Bouwstra, J. F. G.
Vliegenthart and A. Liptak, Carbohydr. Res., 1989, 186, 51–62.
20 R. R. Schmidt, B. Wegmann and K. H. Jung, Liebigs Ann. Chem.,
1991, 121–124.
21 C. R. Ojala, J. M. Ostman and W. H. Ojala, Carbohydr. Res., 2002,
337, 21–29.
22 (a) B. Crone and S. F. Kirsch, J. Org. Chem., 2007, 72, 5435–5438;
(b) K. Hiroya, S. Itoh and T. Sakamoto, J. Org. Chem., 2004, 69,
1126–1136.
23 T. Yao and R. C. Larock, J. Org. Chem., 2005, 70, 1432–1437.
24 T. Yao and R. C. Larock, J. Org. Chem., 2003, 68, 5936–5942.
25 (a) J. R. Johansson, P. Lincoln, B. Norden and N. Kann, J. Org.
Chem., 2011, 76, 2355–2359; (b) L. Zhang, X. Chen, P. Xue, H. H. Y.
Sun, I. D. Williams, K. B. Sharpless, V. V. Fokin and G. Jia, J. Am.
Chem. Soc., 2005, 127, 15998–15999.
26 (a) A. Bertho and J. Maier, Leibigs Ann. Chem., 1932, 50–61;
(b) H. Kunz, W. Sager, D. Schanzenbach and M. Decker, Liebigs
Ann. Chem., 1991, 649–654.
27 (a) C. M. Lo, D. Grotto, A. Chambery, A. Dondoni and A. Marra,
Chem. Commun., 2011, 47, 1240–1242; (b) V. V. Rostovtsev,
L. G. Green, V. V. Fokin and K. B. Sharpless, Angew. Chem.,
Int. Ed., 2002, 41, 2596–2599; (c) C. W. Tornoe, C. Christensen and
M. Meldal, J. Org. Chem., 2002, 67, 3057–3064; (d) E. S. H. El
Ashry ed., Heterocycles from carbohydrate precursors, Springer-
Verlag Berlin, Heidelberg, 2007.
The Ru-catalyzed 1,3-dipolar cycloaddition of azides to
terminal alkynes (RuAAC)25 represents a straightforward
possibility to produce heteroaromatics with a vicinal diglyco-
sylation pattern. For example, fucosylacetylene 17 reacts with
the pivaloylated and acetylated galactosylazides26 26 and 27 to
the corresponding 1,5-diglycosylated 1,2,3-triazoles 28 and 29.
The regioisomeric 1,4-disubstituted products like 30 can be
obtained from the same reactants using Cu(I) as the catalyst
(CuAAC, Scheme 6).27
In summary, several general methods for the preparation of
diglycosylated aromatic and heteroaromatic templates have been
developed. Particular attention has been paid to the synthesis of
products with two neighboring hexose residues as this pattern is
frequently found in natural oligosaccharides. The presented
compounds may serve as starting materials for the synthesis of
functional glycomimetics with improved metabolic stability.
This work was supported by the German Federal Ministry
for Education and Research (TO, grant no. 0315139).
Notes and references
1 (a) R. A. Dwek, Chem. Rev., 1996, 96, 683–720; (b) W. I. Weis and
K. Drickamer, Annu. Rev. Biochem., 1996, 65, 441–473;
(c) L. M. Stoolman, Cell, 1989, 56, 907–910; (d) L. A. Lasky,
Science, 1992, 258, 964–969.
2 (a) S. M. Albelda, C. W. Smith and P. A. Ward, FASEB J., 1994, 8,
504–512; (b) D. Vestweber and J. E. Blanks, Physiol. Rev., 1999,
79, 181–213.
3 K. Ohta, F. Furukawa, M. Fujita, M. Kashihara-Sawami,
Y. Horiguchi, M. Ueda, S. Kurokawa, M. Takigawa and
S. Imamura, Int. J. Dermatol., 1996, 23, 95–99.
4 S. Toppila, T. Paavonen, A. Laitinen, L. A. Laitinen and
R. Renkonen, Am. J. Respir. Cell Mol. Biol., 2000, 23, 492–498.
c
9214 Chem. Commun., 2011, 47, 9212–9214
This journal is The Royal Society of Chemistry 2011