W.-B. Yang et al. / Tetrahedron Letters 42 (2001) 6907–6910
6909
gave aldehyde 8, which was treated with phenylselenyl
chloride to give a-selenylated product 9 as an insepara-
ble diastereomeric mixture in a ratio of 5:2 according to
the 1H NMR analysis. Oxidation of 9 with NaIO4,
followed by an in situ selenoxide elimination provided
the conjugated aldehyde 10 containing a mixture of E
and Z isomers (5:2). The isomers were separated by
column chromatography, and the Z isomer condensate
with a phosphorus ylide afforded the conjugated exo-
glycal 6b in 90% yield as a mixture of E and Z isomers.
5. Zheng, C.; Seeberger, P. H.; Danishefsky, S. J. J. Org.
Chem. 1998, 63, 1126.
6. Seeberger, P. H.; Eckhardt, M.; Gutteridge, C. E.; Dan-
ishefsky, S. J. J. Am. Chem. Soc. 1997, 119, 10064.
7. (a) Hehre, E. J.; Brewer, C. F.; Uchiyama, T.; Schlessel-
mann, P.; Lehmann, J. Biochemistry 1980, 19, 3557; (b)
Dettinger, H.-M.; Kurz, G.; Lehmann, J. Carbohydr. Res.
1979, 74, 301; (c) Fritz, H.; Lehmann, J.; Schlesselmann,
P. Carbohydr. Res. 1983, 113, 71; (d) Brewer, C. F.;
Hehre, E. J.; Lehmann, J.; Weiser, W. Liebigs Ann. 1984,
1078; (e) Vasella, A.; Witzig, C.; Waldraff, C.; Uhlmann,
P.; Briner, K.; Bernet, B.; Panza, L.; Husi, R. Helv. Chim.
Acta 1993, 76, 2847.
8. (a) Smoliakova, I. P. Curr. Org. Chem. 2000, 4, 589; (b)
Belica, P. S.; Franck, R. W. Tetrahedron Lett. 1998, 39,
8225; (c) Lay, L.; Nicotra, F.; Panza, L.; Russo, G.;
Caneva, E. J. Org. Chem. 1992, 57, 1304.
9. (a) Wilcox, C. X.; Long, G. W.; Shu, H. Tetrahedron
Lett. 1984, 25, 395; (b) Haudrechy, A.; Sinay, P. J. Org.
Chem. 1992, 57, 4142; (c) Ali, M. H.; Collins, P. M.;
Overend, W. G. Carbohydr. Res. 1990, 205, 428. The
methylenation was also achieved by modified titanocene
reagent, see: (d) Csuk, R.; Glanzer, B. I. Tetrahedron
1991, 47, 1655; (e) Faivre-Buet, V.; Eynard, I.; Nga, H.
N.; Descotes, G.; Grouiller, A. J. Carbohydr. Chem. 1993,
12, 349.
As previously mentioned, exo-glycals have shown
inhibitory activities against glycosidases, and we
intended to evaluate the inhibitory effect of the depro-
tective forms of the products on glycosidases. The
catalytic hydrogenolysis of 3a and 3c was carried out
on 10 wt% Pd/C (20 mol%) to remove the benzyl
groups at 25°C for 2 h with EtOH/CHCl3/hexanes
(4/1/1). The exocyclic CꢀC bonds were retained under
such reaction conditions; e.g. for the reaction of 3a, the
desired product (12) was obtained in 55% yield, in
addition to the saturated product (40%, the double
bond was reduced). The preliminary assay of glucosi-
dase inhibition looked promising.23
In summary, we have established two expeditious pro-
cedures to prepare conjugated exo-glycals. The depro-
tection and inhibitory assay of these molecules are
currently pursued and will be published in a due course.
Furthermore, these unusual glycosides may be elabo-
rated to other biologically interesting molecules such as
isosteric phosphonate analogues of glycosyl 1-phos-
phates,12 and the mimetics of sugar nucleotides. The
latter compounds have been confirmed to be potent
inhibitors of glycosyltransferases.24
10. Hahn, S.; Flath, F.-J.; Lichtenthaler, F. W. Liebigs Ann.
1995, 2081.
11. Xie, J.; Molina, A.; Czernecki, S. J. Carbohydr. Chem.
1999, 18, 481.
12. Dondoni, A.; Marra, A.; Pasti, C. Tetrahedron: Asymme-
try 2000, 11, 305.
13. Borbas, A.; Szabovik, G.; Antal, Z.; Herczegh, P.; Agocs,
A.; Liptak, A. Tetrahedron Lett. 1999, 40, 3639.
14. Praly, J.-P.; Chen, G.-R.; Gola, J.; Hetzer, G.; Raphoz,
C. Tetrahedron Lett 1997, 38, 8185.
15. (a) Alcaraz, M.-L.; Griffin, F. K.; Paterson, D. E.; Tay-
lor, R. J. K. Tetrahedron Lett. 1998, 39, 8183; (b) Griffin,
F. K.; Murphy, P. V.; Paterson, D. E.; Taylor, R. J. K.
Tetrahedron Lett. 1998, 39, 8179.
Acknowledgements
16. For a detailed review, see: Taylor, R. J. K. J. Chem. Soc.,
Chem. Commun. 1999, 217.
17. Lay, L.; Meldal, M.; Nicotra, F.; Panza, L.; Russo, G. J.
Chem. Soc., Chem. Commun. 1997, 1469.
18. (a) Yang, W.-B.; Tsai, C.-H.; Lin, C.-H. Tetrahedron
Lett. 2000, 41, 2569; (b) Yang, Y.-Y.; Yang, W.-B.; Teo,
C.-F.; Lin, C.-H. Synlett 2000, 1634; (c) Yang, W.-B.;
Chang, C.-F.; Wang, S.-H.; Teo, C.-F.; Lin, C.-H. Tetra-
hedron Lett. 2001, 42, 4657.
We are indebted to Professor Jim-Min Fang at the
National Taiwan University for his valuable sugges-
tions and encouragement. The work is financially sup-
ported by National Science Council (NSC-89-
2113-M-001-058), National Health Research Institute
(NSC-90-2323-B-001-004) and the Heritage Prize of the
Lee Foundation (for C.-H. Lin).
19. Schmidt and co-workers have described the additions of
sugar lactones and subsequent eliminations. However, the
outcome was different from ours, please see: Streicher,
H.; Reiner, M.; Schmidt, R. R. J. Carbohydr. Chem.
1997, 16, 277.
20. In addition to the analysis based on coupling constants,
NOE experiments were executed. For instance, a 6.3%
enhancement of H-1% in compound 5b was observed by
irradiation of H-2, whereas a 4.9 and 2.7% enhancement
of H-3% and H-2 in compound 5b was found by irradia-
tion of H-1%.
References
1. Williams, L. J.; Garbaccio, R. M.; Danishefsky, S. J. In
Carbohydrates in Chemistry and Biology; Ernst, B.; Hart,
G. W.; Sinay, P., Eds.; Wiley-VCH: Weinheim, Germany,
2000; Vol. 1, pp. 61–92.
2. Seeberger, P. H.; Danishefsky, S. J. Acc. Chem. Res.
1998, 31, 685.
3. Seeberger, P. H.; Beebe, X.; Sukenick, G. D.; Pochapsky,
S.; Danishefsky, S. J. Angew. Chem., Int. Ed. Engl. 1997,
36, 491.
21. March, J. Advanced Organic Chemistry; John Wiley and
Sons: New York, 1992; pp. 1022–1023.
4. Zheng, C.; Seeberger, P. H.; Danishefsky, S. J. Angew.
Chem., Int. Ed. Engl. 1998, 37, 786.
22. Hosomi, A.; Sakata, Y.; Sakurai, H. Tetrahedron Lett.
1984, 25, 2383.