Journal of the American Chemical Society
Page 4 of 5
14063. (b) Ishida, N.; Masuda, Y.; Uemoto, S.; Murakami, M. Chem. Eur.
J. 2016, 22, 6524. (c) Seo, H.; Katcher, M. H.; Jamison, T. F. Nat. Chem.
DOI: 10.1038/NCHEM.2690.
ASSOCIATED CONTENT
Supporting Information
1
2
3
4
5
6
7
8
(9) We have developed a formal C(sp3)–H carboxylation through cataꢀ
lytic C–H silylation followed by fluorideꢀmediated CO2 incorporation: (a)
Mita, T.; Michigami, K.; Sato, Y. Org. Lett. 2012, 14, 3462. (b) Mita, T.;
Michigami, K.; Sato, Y. Chem. Asian J. 2013, 8, 2970. Very recently, a
sequential method involving aluminateꢀmediated allylic C(sp3)–H deproꢀ
tonation and Cu(I)ꢀcatalyzed carboxylation of allylic alcohol derivatives
has been reported. See: Ueno, A.; Takimoto, M.; Hou, Z. Org. Biomol.
Chem. 2017, 15, 2370.
Supporting Information Available. The information is available
Supplemental data, experimental procedures, and characterizaꢀ
tions.
AUTHOR INFORMATION
Corresponding Author
(10) For recent examples of Pd(II)ꢀcatalyzed allylic C(sp3)–H functionꢀ
alizations, see: (a) Chen, M. S.; White, M. C. J. Am. Chem. Soc. 2004, 126,
1346. (b) Young, A. J.; White, M. C. J. Am. Chem. Soc. 2008, 130, 14090.
(c) Kondo, H.; Yu, F.; Yamaguchi, J.; Liu, G.; Itami, K. Org. Lett. 2014,
16, 4212. (d) Ammann, S. E.; Liu, W.; White, M. C. Angew. Chem., Int.
Ed. 2016, 55, 9571. For Rh(III)ꢀcatalyzed variants, see: (e) Cochet, T.;
Bellosta, V.; Roche, D.; Ortholand, J.ꢀY.; Greiner, A.; Cossy, J. Chem.
Commun. 2012, 48, 10745. (f) Shibata, Y.; Kudo, E.; Sugiyama, H.;
Uekusa, H.; Tanaka, K. Organometallics 2016, 35, 1547 and references
therein.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
tmita@pharm.hokudai.ac.jp; biyo@pharm.hokudai.ac.jp
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENTS
(11) (a) Klein, H.ꢀF.; Helwig, M.; Braun, S. Chem. Ber. 1994, 127,
1563. (b) Urtel, H.; Meier, C.; Eisenträger, F.; Rominger, F.; Joschek, J.
P.; Hofmann, P. Angew. Chem., Int. Ed. 2001, 40, 781. (c) Beck, R.;
Flörke, U.; Klein, H.ꢀF. Organometallics 2015, 34, 1454.
This work was financially supported by GrantsꢀinꢀAid for Scienꢀ
tific Research (C) (No. 26410108), GrantsꢀinꢀAid for Scientific
Research (B) (No. 26293001) from JSPS, and also by JST ACTꢀC
(No. JPMJCR12YM). K.M. thanks JSPS for a fellowship (No.
14J08052).
(12) For C(sp2)–H addition to aldimines catalyzed by a lowꢀvalent coꢀ
balt species, see: Gao, K.; Yoshikai, N. Chem. Commun. 2012, 48, 4305.
(13) For recent examples of catalytic carboxylation via the insertion of
CO2 into C(sp3)–M bonds, see: (a) León, T.; Correa, A.; Martin, R. J. Am.
Chem. Soc. 2013, 135, 1221. (b) Liu, Y.; Cornella, J.; Martin, R. J. Am.
Chem. Soc. 2014, 136, 11212. (c) Moragas, T.; Cornella, J.; Martin, R. J.
Am. Chem. Soc. 2014, 136, 17702. (d) Nogi, K.; Fujiihara, T.; Terao, J.;
Tsuji, Y. Chem. Commun. 2014, 50, 13052. (e) Zhang, S.; Chen, W.ꢀQ.;
Yu, A.; He, L.ꢀN. ChemCatChem 2015, 7, 3972. (f) Börjesson, M.; Moraꢀ
gas, T.; Martin, R. J. Am. Chem. Soc. 2016, 138, 7504. (g) Moragas, T.;
Martin, R. Synthesis 2016, 48, 2816. (h) Moragas, T.; Gaydou, M.; Martin,
R. Angew. Chem., Int. Ed. 2016, 55, 5053.
REFERENCES
(1) For selected reviews on C–H activation, see: (a) Lyons, T. W.; Sanꢀ
ford, M. S. Chem. Rev. 2010, 110, 1147. (b) Engle, K. M.; Yu, J.ꢀQ. J.
Org. Chem. 2013, 78, 8927. (c) Hartwig, J. F.; Larsen, M. A. ACS Cent.
Sci. 2016, 2, 281. (d) Gensch, T.; Hopkinson, M. N.; Glorius, F.; Wencelꢀ
Delord, J. Chem. Soc. Rev. 2016, 45, 2900.
(2) For selected reviews on C(sp3)–H activation, see: (a) Jazzar, R.;
Hitce, J.; Renaudat, A.; SofackꢀKreutzer, J.; Baudoin, O. Chem. Eur. J.
2010, 16, 2654. (b) Dastbaravardeh, N.; Christakakou, M.; Haider, M.;
Schnürch, M. Synlett 2014, 46, 1421.
(14) For the detail of condition screening, see the SI.
(15) For a review on isomerization of allylbenzenes, see: Hassam, M.;
Taher, A.; Arnott, G. E.; Green, I. R.; van Otterlo, W. A. L. Chem. Rev.
2015, 115, 5462.
(16) CsF accelerated Niꢀcatalyzed hydrocarboxylation of alkynes,
though the role of CsF was unclear. See: Li, S.; Yuan, W.; Ma, S. Angew.
Chem., Int. Ed. 2011, 50, 2578.
(3) For recent reviews on C–H addition to polar multiple bonds, see: (a)
Yan, G.; Wu, X.; Yang, M. Org. Biomol. Chem. 2013, 11, 5558. (b)
Zhang, X.ꢀS.; Chen, K.; Shi, Z.ꢀJ. Chem. Sci. 2014, 5, 2146. (c) Hummel,
J. R.; Boerth, J. A.; Ellman, J. A. Chem. Rev. 2017, 117, DOI:
10.1021/acs.chemrev.6b00661.
(17) (a) Komiya, S.; Bundo, M.; Yamamoto, T.; Yamamoto, A. J. Orꢀ
ganomet. Chem. 1979, 174, 343. (b) Mohtachemi, R.; Kannert, G.; Schuꢀ
mann, H. J. Organomet. Chem. 1986, 310, 107. (c) Rudkin, M. E.;
Joensuu, P. M.; MacLachlan, W. S.; Lam, H. W. Org. Lett. 2008, 10, 2939.
(18) Bryndza, H. E.; Bergman, R. G. J. Am. Chem. Soc. 1979, 101,
4766.
(19) Xantphos in a Rh(I) complex worked as a POPꢀtype pincer ligand.
See: Ren, P.; Pike, S. D.; Pernik, I.; Weller, A. S.; Willis, M. C. Organoꢀ
metallics 2015, 34, 711 and references therein.
(4) For recent reviews on CO2 fixation reactions, see: (a) Sakakura, T.;
Choi, J.ꢀC.; Yasuda, H. Chem. Rev. 2007, 107, 2365. (b) Mori, M. Eur. J.
Org. Chem. 2007, 4981. (c) Riduan, S. N.; Zhang, Y. Dalton Trans. 2010,
39, 3347. (d) Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.;
Kühn, F. E. Angew. Chem., Int. Ed. 2011, 50, 8510. (e) Tsuji, Y.; Fujihara,
T. Chem. Commun. 2012, 48, 9956. (f) Zhang, L.; Hou, Z. Chem. Sci.
2013, 4, 3395. (g) Kielland, N.; Whiteoak, C. J.; Kleij, A. W. Adv. Synth.
Catal. 2013, 355, 2115. (h) Cai, X.; Xie, B. Synthesis 2013, 45, 3305. (i)
Maeda, C.; Miyazaki, Y.; Ema, T. Catal. Sci. Technol. 2014, 4, 1482. (j)
Yu, B.; He, L.ꢀN. ChemSusChem 2015, 8, 52. (k) Börjesson, M.; Moragas,
T.; Gallego, D.; Martin, R. ACS Catal. 2016, 6, 6739.
(5) For selected examples of catalytic C(sp)–H carboxylations, see: (a)
Gooßen, L. J.; Rodríguez, N.; Manjolinho, F.; Lange. P. P. Adv. Synth.
Catal. 2010, 352, 2913. (b) Inamoto, K.; Asano, N.; Kobayashi, K.;
Yonemoto, M.; Kondo, Y. Org. Biomol. Chem. 2012, 10, 1514. For cataꢀ
lytic C(sp2)–H carboxylations, see: (c) Boogaerts, I. I. F.; Nolan, S. P. J.
Am. Chem. Soc. 2010, 132, 8858. (d) Zhang, L.; Cheng, J.; Ohishi, T.;
Hou, Z. Angew. Chem., Int. Ed. 2010, 49, 8670. (e) Boogaerts, I. I. F.;
Fortman, G. C.; Furst, M. R. L.; Cazin, C. S. J.; Nolan, S. P. Angew.
Chem., Int. Ed. 2010, 49, 8674. (f) Inomata, H.; Ogata, K.; Fukuzawa, S.;
Hou, Z. Org. Lett. 2012, 14, 3986.
(20) (a) Galamb, V.; Pályi, G. J. Chem. Soc., Chem. Commun. 1982,
487. (b) Zucchi, C.; Pálvi, G.; Galamb, V.; SámpárꢀSzerencsés, E.; Markó,
L.; Li, P.; Alper, H. Organometallics 1996, 15, 3222.
(21) (a) Solin, N.; Kjellgren, J.; Szabó, K. J. J. Am. Chem. Soc. 2004,
126, 7026. (b) Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2008, 130,
15254. (c) Johnson, M. T.; Johansson, R.; Kondrashov, M. V.; Steyl, G.;
Ahlquist, M. S. G.; Roodt, A.; Wendt, O. F. Organometallics 2010, 29,
3521. (d) Wu, J.; Green, J. C.; Hazari, N.; Hruszkewycz, D. P.; Incarvito,
C. D.; Schmeier, T. J. Organometallics 2010, 29, 6369. (e) Duong, H. A.;
Huleatt, P. B.; Tan, Q.ꢀW.; Shuying, E. L. Org. Lett. 2013, 15, 4034. (f)
Mita, T.; Higuchi, Y.; Sato, Y. Chem. Eur. J. 2015, 21, 16391.
(22) When the reaction was conducted under 3 atm CO2 pressure in the
absence of CsF in DMA (0.05 M), the yield of 2a was increased to 66%
(vs 71% using CsF), indicating that solubility of CO2 in DMA is a key
factor for efficient carboxylation (see the SI).
(6) (a) Mizuno, H.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2011,
133, 1251. (b) Sasano, K.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc.
2013, 135, 10954. (c) Suga, T.; Mizuno, H.; Takaya, J.; Iwasawa, N.
Chem. Commun. 2014, 50, 14360.
n
(23) The treatment of 1a with BuLi in the presence of HMPA in 0 ºC
in THF followed by introduction of gaseous CO2 gave regioisomeric mixꢀ
ture of carboxylated products in 68% combined yield (linear/branch =
57:43, see the SI). Besides, no carboxylated product was observed from
(7) (a) Nizova, G. V.; SüssꢀFink, G.; Stanislas, S.; Shul’pin, G. B.
Chem. Commun. 1998, 1885. (b) Wilcox, E. M.; Roberts, G. W.; Spivey,
J. J. Catal. Today 2003, 88, 83. (c) Spivey, J. J.; Wilcox, E. M.; Roberts,
G. W. Catal. Commun. 2008, 9, 685.
1,4ꢀdiene
6d
by
the
same
protocol,
suggesting
that
(8) For carboxylation of C(sp3)–H bonds under UV irradiation, see: (a)
Masuda, Y.; Ishida, N.; Murakami, M. J. Am. Chem. Soc. 2015, 137,
Co(acac)2/Xantphos/AlMe3 catalytic system is advantageous in terms of
both regioselectivitity as well as reactivity.
ACS Paragon Plus Environment