Novel Retinoic Acid Receptor Agonists
J ournal of Medicinal Chemistry, 1996, Vol. 39, No. 14 2663
198 °C; 1H-NMR (CDCl3) δ 1.35 (s, 18H, 6(CH3)), 2.29, (s, 3H,
CH3), 2.41 (s, 3H, CH3), 5.84 (s, 1H, dCH), 6.41 (d, J ) 15 Hz,
1H, dCH), 6.54 (d, J ) 11 Hz, 1H, dCH), 7.08 (m, 1H, dCH),
7.32 (d, J ) 1 Hz, 2H, Ar-H), 7.39 (t, J ) 1 Hz, 1H, Ar-H);
HRMS found 340.2394, calcd 340.2402. Anal. (C23H32O2) C,
H.
(9) Boehm, M. F.; Zhang, L.; Badea, B. A.; White, S. K.; Berger, E.;
Suto, C. M.; Goldman, M. E.; Heyman, R. A. Synthesis and
Structure Activity Relationships of Novel Retinoid X Receptor
Selective Retinoids. J . Med. Chem. 1994, 37, 3021-3027.
(10) Nadzan, A. M.; Boehm, M. F.; Zhang, L.; Badea, B. A.; Zhi, L.;
White, S. K.; Mais, D.E.; Berger, E.; Suto, C. M.; McClurg. M.
R.; Davies, P. J . A.; Heyman, R. A. Design of Novel RXR Selective
Retinoids. Eur. J . Med. Chem. 1995, 30, 520s-533s.
(11) Mills, C. M.; Mark, S. R. Adverse reactions to oral retinoids. An
update. Drug Saf. 1993, 9, 280-290.
(12) Yob, E. H.; Pochi, P. E. Side effects and long term toxicity of
synthetic retinoids. Arch. Dermatol. 1987, 123, 1375-1378.
(13) David, M.; Hodak, E.; Lowe, N. J . Adverse effects of retinoids.
Med. Toxicol. Adverse Drug Exp. 1988, 3, 273-288.
(2E,4E,6Z)-7-(3,5-Di-ter t-b u t ylp h en yl)-3-m et h yloct a -
2,4,6-tr ien oic Acid (10b). The 2E,4E,6Z isomer 10b was
prepared in the same manner as 10a except that 9b was used
instead of 9a . Compound 10b was obtained in 70% yield: TLC
1
(10% MeOH-90% CHCl3) Rf 0.57; mp 221-222 °C; H-NMR
(CDCl3) δ 1.34 (s, 18H, 6(CH3)), 2.18, (s, 3H, CH3), 2.23 (s, 3H,
CH3), 5.77 (s, 1H, dCH), 6.25 (d, J ) 11 Hz, 1H, dCH), 6.29
(d, J ) 15 Hz, 1H, dCH), 6.84 (m, 1H, dCH), 7.10 (d, J ) 1
Hz, 2H, Ar-H), 7.37 (t, J ) 1 Hz, 1H, Ar-H); HRMS found
340.2425, calcd 340.2402. Anal. (C23H32O2) C, H.
(14) Warrell, R. P. Retinoid Resistance in Acute Promyelocytic
Leukemia: New Mechanisms, Strategies and Implications.
Blood 1993, 82, 1949-1953.
Cell Cu ltu r e. ME-180 cells (ATCC HTB 33) were obtained
from the American Type Culture Collection (ATCC, Rockville,
MD). They were grown and maintained in McCoy’s 5a medium
(Gibco) supplemented with 10% fetal bovine serum, glutamine,
and antibiotics. The cells were maintained as monolayer
cultures grown at 37 °C in a humidified atmosphere of 5% CO2
in air.
(15) Huang, M. E.; Ye, Y. C.; Chen, S. R.; Chair, J . R.; Lu, J . X.; Zhoa,
L.; Gu, L. J .; Wang, Z. Y. Use of All-trans-Retinoic Acid in the
Treatment of Acute Promyelocytic Leukemia. Blood 1988, 72,
567-572.
(16) Warrell, R. P., J r.; Frankel, S. R.; Miller, W. H.; Scheinberg, D.
A.; Itri, L. M.; Hittelman, W. N.; Vyas, R.; Andreeff, M.; Tafuri,
A.; J akubowski, A. Differentiation Therapy of Acute Promyelo-
cytic Leukemia with Tretinoin (All-trans-Retinoic Acid). N. Engl.
J . Med. 1991, 324, 1385-1393.
(17) Shudo, K.; Kagechika, H.; Kawachi, E.; Hashimoto, Y. Chalcone
Carboxylic Acids. Potent Differentiation Inducers of Human
Promyelocytic Leukemia Cell HL-60. Chem. Pharm. Bull. (To-
kyo) 1985, 33, 404-407.
(18) Shudo, K.; Kagechika, H. Structure-Activity Relationships of a
New Series of Synthetic Retinoids (Retinobenzoic Acids). In
Chemistry and Biology of Synthetic Retinoids; CRC Press, Inc.:
Boca Raton, FL, 1990; pp 275-286.
(19) Lotan, R.; Lotan, D. Inhibition of Melanoma Cell Growth by
Retinoids: Structure-Activity Relationships. In Chemistry and
Biology of Synthetic Retinoids; CRC Press, Inc.: Boca Raton, FL,
1990; pp 251-273.
(20) Boehm, M. F.; McClurg, M. M.; Pathirana, C.; Mangelsdorf, D.;
White, S. K.; Hebert, J .; Winn, D.; Goldman, M. E.; Heyman, R.
A. Synthesis of High Specific Activity [3H]-9-cis Retinoic Acid
and its Application for Identifying Retinoids with Unusual
Binding Properties. J . Med. Chem. 1994, 37, 408-414.
(21) Cheng, Y.-C.; Prusoff, W. F. Relationship Between the Inhibition
Constant (Ki) and the Concentration of Inhibitor Which Causes
50% Inhibition (I50) of an Enzymatic Reaction. Biochem. Phar-
macol. 1973, 22, 3099-3108.
(22) Mangelsdorf, D. J .; Ong, E. S.; Dyck, J . A.; Evans, R. M. A
Nuclear Receptor That Identifies a Novel Retinoic Acid Response
Pathway. Nature 1990, 345, 224-229.
(23) Berger, T. S.; Parandoosh, Z.; Perry, B. W.; Stein, R. B.
Interaction of Glucocorticoid Analogues With the Human Glu-
cocorticoid Receptor. J . Steroid Biochem. Mol. Biol. 1992, 41,
733-738.
(24) Umesono, K.; Giguere, V.; Glass, C. K.; Rosenfeld, M. G.; Evans,
R. M. Retinoic Acid and Thyroid Hormone Induce Gene Expres-
sion Through a Common Responsive Element. Nature 1988, 336,
262-265.
(25) Sykes, J . A.; Whitescarver, J .; J ernstrom, P.; Nolan, J . F.; Byatt,
P. Some properties of a new epithelial cell line of human origin.
J . Natl. Cancer Inst. 1970, 45, 107-122.
(26) Shrivastav, S.; Bonar, R. A.; Stone, K. R.; Paulson, D. F. An in
vitro assay procedure to test chemotherapeutic drugs on cells
from human solid tumors. Cancer Res. 1980, 40, 4438-4442.
(27) Zheng, Z. S.; Polakowska, R.; J ohnson, A.; Goldsmith, L. A.
Transcriptional Control of Epidermal Growth Factor Receptor
by Retinoic Acid. Cell Growth Differ. 1992, 3, 225-232.
(28) Bischoff, E. D.; Zhang, L.; Boehm, M. F.; Nadzan, A. M.; Heyman,
R. A.; Shalinsky, D. R. ALRT1550, A Potent RAR-Selective
Retinoid, Dose-Dependently Inhibits the Growth of Established
Squamous Cell Carcinoma Xenografts in Athymic Nude Mice.
Proc. Am. Assoc. Cancer Res. 1996, 37, 1576.
In cor p or a tion of [5′-3H]Th ym id in e. The method used
for determining radiolabeled thymidine incorporation was
adapted from the procedure described by Shrivastav et al.26
ME-180 cells, harvested by trypsinization, were plated in a
96-well flat bottom microtiter plate (Costar) at a density of
2000 cells/well. To appropriate wells were added retinoid test
compounds (solubilized in 10% DMSO-90% EtOH then diluted
in cell culture media) at final concentrations ranging from
10-12 to 10-6 in a final volume of 100 µL/well. After the
appropriate incubation time (4 days), 1 µCi of [5′-3H]thymidine
(Amersham, U.K., 43 Ci/mmol) in 25 µL of culture medium
was added to each well, and the cells were incubated for an
additional 6 h. The supernatant was then removed, and the
cells were washed with Versene (EDTA). ME-180 cells were
briefly treated with 25 µL of 0.5% trypsin to dislodge the cells
from the plate. The DNA was precipitated with 2% trichlo-
roacetic acid onto glass fiber filter mats utilizing a SKATRON
multiwell cell harvester (Skatron Instruments, Sterling, VA).
Refer en ces
(1) Hong, W. K.; Itri, L. M. Retinoids and Human Cancer. In The
Retinoids. Biology, Chemistry and Medicine, 2nd ed.; Sporn, M.
B., Roberts, A. B., Goodman, D. S., Eds.; Raven Press: New
York, 1994; pp 573-630.
(2) Peck, G. L.; DiGiovanna, J . L. Synthetic Retinoids in Dermatol-
ogy. In The Retinoids. Biology, Chemistry and Medicine, 2nd ed.;
Sporn, M. B., Roberts, A. B., Goodman, D. S., Eds.; Raven
Press: New York, 1994; pp 631-658.
(3) Boehm, M. F.; Heyman, R. A.; Sheetal, P.; Stein, R. B.; Nagpal,
S. Retinoids: Biological Function and Use in the Treatment of
Dermatological Diseases. Exp. Opin. Invest. Drugs 1995, 4, 593-
612.
(4) Mangelsdorf, D. J .; Umesono, K.; Evans, R. M. The Retinoid
Receptors. In The Retinoids; Academic Press: Orlando, FL, 1994;
pp 319-349.
(5) Yang-Yen, H.-F.; Zhang, X.-K.; Graupner, G.; Tzukerman, M.;
Sakamoto, B.; Karin, M.; Pfahl, M. Antagonism Between Ret-
inoic Acid Receptors and AP-1: Implications for Tumor Promo-
tion and Inflammation. New Biologist 1991, 3, 1206-1210.
(6) Nagpal, S.; Athanikar, J .; Chandraratna, R. A. S. Separation of
Transactivation and AP-1 Antagonism Functions of Retinoic Acid
Receptor R. J . Biol. Chem. 1995, 270, 923-927.
(7) Shule, R.; Rangarajan, P.; Yang, N.; Kleiwer, S.; Ransone, L. J .;
Bolado, J .; Verma, I. M.; Evans, R. M. Retinoic acid is a Negative
Regulator of AP-1 Responsive Genes. Proc. Natl. Acad. Sci.
U.S.A. 1991, 88, 6092-6096.
(8) Weinstein, G.; J efes, E.; Duvic, M.; Friedman, D.; J egasothy, B.;
Tharp, M.; J orizzo, J .; Krueger, G.; Lowe, N.; Shmunes, E.;
Tschen, E.; Monroe, A.; Sefton, J .; Lew-Kaya, D.; Lue, J .;
Chandraratna, R.; Gibson, J . Tazarotene Gel for the Treatment
of Plaque Psoriasis: A Double Blind Clinical Study. J . Invest.
Dermatol. 1995, 104, 661.
J M960285J