10.1002/adsc.202000306
Advanced Synthesis & Catalysis
3-Methyl-2-propylpyridine (1a, 0.250 mmol), substituted
iodobenzene (2, 0.375 mmol, 1.50 equiv), Pd(OPiv)2 (3.86
mg, 0.0125 mmol, 5.0 mol%), CF3COOH (42.8 mg, 0.375
mmol, 1.5 equiv), and HFIP (2.0 mL) were added into a 10
mL sealed tube. The mixture was stirred at 100 oC for 20 h.
Then, the solvent was removed under vacuum, and the
arylation products were separated by column
chromatography on silica gel (hexane/ethyl acetate = 10:1).
Scheme 3. KIE experiment
Acknowledgements
The proposed reaction mechanism is as follows (Figure
3):[11d,19-21] (1) A nitrogen atom of the pyridine moiety of 1
coordinates to the palladium catalyst to form intermediate
A and the palladium center approaches the -position of
the alkyl chain. In this step, the substituent at the 3-
position of the pyridine directing group is very important
for promoting the reaction and controllingthe
regioselectivity; (2) formation of intermediate B proceeds
This work was partially supported by the 64th China Postdoctoral
Science Foundation Grant Number 2018M641642 and JSPS
KAKENHI Grant Numbers JP 17H03016 and 18H04656.
References
by
a
concerted metalation deprotonation (CMD)
[1] a) J. J. Li, Heterocyclic Chemistry in Drug Discovery;
John Wiley & Sons; Hoboken, NJ, 2013; b) K. Fusa, I.
Takahashi, S. Watanabe, Y. Aono, H. Ikeda, T. Saigusa,
H. Nagase, T. Suzuki, N. Koshikawa, A. R. Cools,
Neuroscience 2005, 130, 745-755; c) S. Li, N. Wang,
M. Hong, H. Y. Tan, G. Pan, Y. Feng, Molecules 2018,
23, 352; d) S. Fukumoto, E. Imamiya, K. Kusumoto, S.
Fujiwara, T. Watanabe, M. Shiraishi, J. Med.
Chem .2002, 45, 3009-3021; e) J. R. Corte, Y. L. Li,
US 20060074103A1, October 4, 2005.
mechanism; (3) oxidative addition of aryl iodide 2 to
intermediate B furnishes intermediate C; and (4) reductive
elimination of PdX2 species by the participation of silver
acetate yields arylated product 3.
[2] a) E. Reimann, J. M. Friesinger, Arch. Pharm. 1985,
318, 871-878; b) U. Azzena, G. Dettori, C. Lubinu, A.
Mannu, L. Pisano, Tetrahedron 2005, 61, 8663-8668.
[3]Selected review of C(sp2)-H activation: a) D. Kalyani,
N. R. Deprez, L. V. Desai, M., S. Sanford, J. Am. Chem.
Soc. 2005, 127, 7330-7331; b) X. Chen, C. E. Goodhue,
J.-Q. Yu, J. Am. Chem. Soc.2006, 128, 12634-12635; c)
D. Shabashov, O. Daugulis, J. Am. Chem. Soc. 2010,
132, 3965-3972; d) G. Rouquet, N. Chatani, Angew.
Chem. Int. Ed. 2013, 52, 11726-11743; e) O. Daugulis,
J. Roane, L. D. Tran, Acc. Chem. Res.2015, 48, 1053-
1064; f) N. M. Mishra, S. Sharma, J. Park, S. Han, I. S.
Kim, ACS Catal. 2017, 7, 2821-2847; g) Y. Ding, S.
Fan, X. Chen, Y. Gao, S. Li, G. Li, Org. Lett. 2019, 21,
4224-4228; h) G. Liao, T. Zhou, Q.-J. Yao, B.-F. Shi,
Chem. Commun. 2019, 55, 8514-8523.
Figure 3. Proposed mechanism of secondary C(sp3)-H
arylation using pyridine directing group.
In summary, we successfully developed a pyridine-
directing-group-assisted palladium-catalyzed secondary
C(sp3)-H arylation protocol. Although several examples of
activated and/or terminal C(sp3)-H bond transformations
assisted by pyridine directing groups have recently been
reported, examples of pyridine directing group-assisted
unactivated C(sp3)-bond arylation are still rare. The key to
success was the introduction of a substituent at the 3-
poistion of the pyridine directing group and utilizing
trifluoroacetic acid as an additive to reduce the strong
coordination ability of the pyridine moiety. Biaryl iodides
can enhance the reactivity compared with monoaryl
iodides. The desired arylation products were obtained in
good to excellent yields, even on the gram-scale, without
loss of the functional groups. Further, preliminary
asymmetric C(sp3)-H arylation was achieved.
[4] Selected review of C(sp3)-H activation: a) Y. Fuchita,
K. Hiraki, T. Uchiyama, J. Chem. Soc., Dalton Trans.
1983, 897-899; b) K. Hiraki, Y. Fuchtta, Y. Matsumoto,
Chem. Lett. 1984, 13, 1947-1948; c) R. Giri, X. Chen,
J.-Q. Yu, Angew. Chem. Int. Ed. 2005, 44, 2112-2115;
d) V. G. Zaitsev, D. Shabashov, O. Daugulis, J. Am.
Chem. Soc. 2005, 127, 13154-13155; e) L. Tran, O.
Daugulis, Angew. Chem. Int. Ed. 2012, 51, 5188-5191;
f) S. Y. Zhang, G. He, W. A. Nack, Y. Zhao, Q. Li, G.
Chen, J. Am. Chem. Soc. 2013, 135, 2124-2127; g) R.
K. Rit, M. R.Yadav, K. Ghosh, M. Shankar, A. K.
Sahoo, Org. Lett. 2014, 16, 5258-5261; h) Q. Zhang, X.
S. Yin, K. Chen, S. Q. Zhang, B. F. Shi, J. Am. Chem.
Soc. 2015, 137, 8219-8226; i) Y. Xu, M. C. Young, C.
Wang, D. M. Magness, G. Dong, Angew. Chem. Int. Ed.
2016, 55, 9084-9087; j) J. J. Topczewski, P. J. Cabrera,
N. I. Saper, M. S. Sanford, Nature 2016, 531, 220-224;
Experimental Section
4
This article is protected by copyright. All rights reserved.