ARTICLES
7. Roughley, S. D. & Jordan, A. M. The medicinal chemist’s toolbox: an analysis
of reactions used in the pursuit of drug candidates. J. Med. Chem. 54,
3451–3479 (2011).
8. Dunetz, J. R., Magano, J. & Weisenburger, G. A. Large-scale applications of
amide coupling reagents for the synthesis of pharmaceuticals. Org. Process Res.
Dev. 20, 140–177 (2016).
9. Meller, A., Habben, C., Noltemeyer, M. & Sheldrick, G. M. Crystal and
molecular structure of 5-p-fluorophenyl-2,4.6-trimethylcyclo-l,3-dioxa-2.4,6-
triborane. Z. Naturforsch. B. 37, 1504–1506 (1982).
10. Oesterle, R., Maringgele, W. & Meller, A. Gezielte synthesen für boroxazine.
J. Organomet. Chem. 284, 281–289 (1985).
34. Gernigon, N., Al-Zoubi, R. M. & Hall, D. G. Direct amidation of carboxylic acids
catalyzed by ortho-iodo arylboronic acids: catalyst optimization, scope, and
preliminary mechanistic study supporting a peculiar halogen acceleration effect.
J. Org. Chem. 77, 8386–8400 (2012).
35. Liu, S. et al. Direct amidation of amino acid derivatives catalyzed by
arylboronic acids: applications in dipeptide synthesis. Eur. J. Org. Chem.
2013, 5692–5700 (2013).
36. Yamashita, R., Sakakura, A. & Ishihara, K. Primary alkylboronic acids as highly
active catalysts for the dehydrative amide condensation of α-hydroxycarboxylic
acids. Org. Lett. 15, 3654–3657 (2013).
37. Mohy El Dine, T., Erb, W., Berhault, Y., Rouden, J. & Blanchet, J. Catalytic
chemical amide synthesis at room temperature: one more step toward peptide
synthesis. J. Org. Chem. 80, 4532–4544 (2015).
38. Lundberg, H. & Adolfsson, H. Hafnium-catalyzed direct amide formation at
room temperature. ACS Catal. 5, 3271–3277 (2015).
39. Mohy El Dine, T., Rouden, J. & Blanchet, J. Borinic acid catalysed peptide
synthesis. Chem. Commun. 51, 16084–16087 (2015).
40. Tam, E. K. W., Rita, Liu, L. Y. & Chen, A. 2-Furanylboronic acid as an effective
catalyst for the direct amidation of carboxylic acids at room temperature. Eur. J.
Org. Chem. 2015, 1100–1107 (2015).
41. Ishihara, K. & Lu, Y. Boronic acid–DMAPO cooperative catalysis for
dehydrative condensation between carboxylic acids and amines. Chem. Sci.
7, 1276–1280 (2016).
11. Suzuki, A. Cross-coupling reactions of organoboranes: an easy way to
construct C–C bonds (Nobel lecture). Angew. Chem. Int. Ed. 50,
6722–6737 (2011).
12. Iwadate, N. & Suginome, M. Differentially protected diboron for regioselective
diboration of alkynes: internal-selective cross-coupling of 1-alkene-1,2-
diboronic acid derivatives. J. Am. Chem. Soc. 132, 2548–2549 (2010).
13. Dewar, M. J. S., Kubba, V. P. & Pettit, R. New heteroaromatic compounds. part I.
9-Aza-10-bora-phenanthrene. J. Chem. Soc. 3073–3076 (1958).
14. Chen, Z., Wannere, C. S., Corminboeuf, C., Puchta, R. & Schleyer, P. V. R.
Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem.
Rev. 105, 3842–3888 (2005).
15. Hall, D. G. Boronic Acids: Preparation and Applications in Organic Synthesis,
Medicine and Materials 2nd edn (Wiley-VCH, 2011).
42. Chaudhari, P. S., Salim, S. D., Sawant, R. V. & Akamanchi, K. G. Sulfated
tungstate: a new solid heterogeneous catalyst for amide synthesis. Green Chem.
12, 1707–1710 (2010).
43. Bannister, R. M., Brookes, M. H., Evans, G. R., Katz, R. B. & Tyrrell, N. D. A
scaleable route to the pure enantiomers of verapamil. Org. Process Res. Dev. 4,
467–472 (2000).
16. Imamura, G. et al. Electronic structure and graphenization of
hexaphenylborazine. J. Phys. Chem. C 116, 16305–16310 (2012).
17. Müller, M., Behnle, S., Maichle-Mössmer, C. & Bettinger, H. F. Boron–nitrogen
substituted perylene obtained through photocyclisation. Chem. Commun. 50,
7821–7823 (2014).
18. Tokunaga, Y. Boroxine chemistry: from fundamental studies to applications
in supramolecular and synthetic organic chemistry. Heterocycles
87, 991–1021 (2013).
19. El-Faham, A. & Albericio, F. Peptide coupling reagents, more than a letter soup.
Chem. Rev. 111, 6557–6602 (2011).
20. Constable, D. J. C. et al. Key green chemistry research areas—a perspective from
pharmaceutical manufacturers. Green Chem. 9, 411–420 (2007).
21. Charville, H., Jackson, D., Hodges, G. & Whiting, A. The thermal and boron-
catalysed direct amide formation reactions: mechanistically understudied yet
important processes. Chem. Commun. 46, 1813–1823 (2010).
22. Lanigan, R. M. & Sheppard, T. D. Recent developments in amide synthesis:
direct amidation of carboxylic acids and transamidation reactions. Eur. J. Org.
Chem. 2013, 7453–7465 (2013).
23. Lundberg, H., Tinnis, F., Selander, N. & Adolfsson, H. Catalytic amide
formation from non-activated carboxylic acids and amines. Chem. Soc. Rev.
43, 2714–2742 (2014).
24. Zheng, H. & Hall, D. G. Boronic acid catalysis: an atom-economical platform for
direct activation and functionalization of carboxylic acids and alcohols.
Aldrichmica Acta 47, 41–51 (2014).
44. Mylavarapu, R. K. et al. Boric acid catalyzed amidation in the synthesis of active
pharmaceutical ingredients. Org. Process Res. Dev. 11, 1065–1068 (2007).
45. Shinde, G. B., Niphade, N. C., Deshmukh, S. P., Toche, R. B. & Mathad, V. T.
Industrial application of the Forster reaction: novel one-pot synthesis of
cinacalcet hydrochloride, a calcimimetic agent. Org. Process Res. Dev. 15,
455–461 (2011).
46. Schafer, G., Matthey, C. & Bode, J. W. Facile synthesis of sterically hindered and
electron-deficient secondary amides from isocyanates. Angew. Chem. Int. Ed. 51,
9173–9175 (2012).
47. Li, J., Lear, M. J. & Hayashi, Y. Sterically demanding oxidative amidation of α-
substituted malononitriles with amines using O2. Angew. Chem. Int. Ed. 55,
9060–9064 (2016).
48. Marks, P. A. & Breslow, R. Dimethyl sulfoxide to vorinostat: development
of this histone deacetylase inhibitor as an anticancer drug. Nat. Biotechnol.
25, 84–90 (2007).
49. Faivre, S., Demetri, G., Sargent, W. & Raymond, E. Molecular basis for sunitinib
efficacy and future clinical development. Nat. Rev. Drug. Discov. 6, 734–745 (2007).
50. McKeage, K. & Plosker, G. L. Amisulpride. CNS Drugs 18, 933–956 (2004).
25. Ishihara, K. & Yamamoto, H. Arylboron compounds as acid catalysts in organic
synthetic transformations. Eur. J. Org. Chem. 1999, 527–538 (1999).
26. Ishihara, K., Ohara, S. & Yamamoto, H. 3,4,5-Trifluorobenzeneboronic acid as
an extremely active amidation catalyst. J. Org. Chem. 61, 4196–4197 (1996).
27. Ishihara, K., Kondo, S. & Yamamoto, H. 3,5-Bis(perfluorodecyl)phenylboronic
acid as an easily recyclable direct amide condensation catalyst. Synlett 2001,
1371–1374 (2001).
28. Latta, R., Springsteen, G. & Wang, B. Development and synthesis of an arylboronic
acid-based solid-phase amidation catalyst. Synthesis 2001, 1611–1613 (2001).
29. Arnold, K. et al. To catalyze or not to catalyze? Insight into direct amide bond
formation from amines and carboxylic acids under thermal and catalyzed
conditions. Adv. Synth. Catal. 348, 813–820 (2006).
30. Arnold, K., Davies, B., Hérault, D. & Whiting, A. Asymmetric direct amide
synthesis by kinetic amine resolution: a chiral bifunctional aminoboronic acid
catalyzed reaction between a racemic amine and an achiral carboxylic acid.
Angew. Chem. Int. Ed. 47, 2673–2676 (2008).
31. Al-Zoubi, R. M., Marion, O. & Hall, D. G. Direct and waste-free amidations and
cycloadditions by organocatalytic activation of carboxylic acids at room
temperature. Angew. Chem. Int. Ed. 47, 2876–2879 (2008).
Acknowledgements
This work is dedicated to Prof. Stuart L. Schreiber on the occasion of his 60th birthday. This
work was supported by a Grant-in-Aid for Young Scientists A (KAKENHI no. 25713002)
from the JSPS. N.K. thanks the JSPS for financial support via KAKENHI grant no.
JP16H01043 ‘Precisely Designed Catalysts with Customized Scaffolding’. H.N. is a JSPS
research fellow. The authors thank T. Kimura for the X-ray crystallographic analysis of 1a,
8a and 9, and they would also like to thank R. Sawa, Y. Kubota and K. Iijima for technical
assistance with the analysis of 11B NMR spectra.
Author contributions
H.N., M.S. and N.K. conceived and designed the experiments. H.N., M.F. and Y.A.
performed the experiments and analysed the data. H.N. conducted the density
functional theory calculations. H.N., M.S. and N.K. co-wrote the paper.
Additional information
Supplementary information and chemical compound information are available in the
M.S. and N.K.
32. Adolfsson, H., Lundberg, H. & Tinnis, F. Titanium(IV) isopropoxide as an
efficient catalyst for direct amidation of nonactivated carboxylic acids. Synlett 23,
2201–2204 (2012).
33. Lundberg, H., Tinnis, F. & Adolfsson, H. Direct amide coupling of non-activated Competing financial interests
carboxylic acids and amines catalysed by zirconium(IV) chloride. Chem. Eur. J.
18, 3822–3826 (2012).
The Institute of Microbial Chemistry (BIKAKEN) has filed a patent application on DATB
catalysts for general direct amide-forming reactions.
7
© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.