1908
R. NAGAMATSU et al.
by the previously described method14,15) with slight modifications. The
preparation of 10 as an example of the general procedure started by
drying thionine-supported Na–Y zeolite (3.0 g) in a two-neck flask at
120 ꢁC for 1.5 h in vacuo. To the flask, 30 mL of distilled hexane and
30 mL of pyridine were added, and the mixture was stirred for 5 h in an
argon atmosphere. To the resulting mixture, 30.7 mg of (S)-ꢀ-terpinyl
acetate (9) prepared from (S)-ꢀ-terpineol (7) was added, and the mixture
was photooxygenated at 0 ꢁC for 1 h in a slow stream of oxygen. After
stirring for 12 h with 50 mL of CH3CN, the mixture was passed through
a Celite pad, and the filtrate was evaporated in vacuo and subjected to
silica gel column chromatography (CHCl3: Et2O, 16:1) to give 17.1 mg
of 10 as a white solid in a 48% yield.
Acknowledgments
The authors are grateful to Dr. N. Matsuura of
Okayama University of Science for helpful discussions,
and to Dr. H. Oguri of Hokkaido University for use of
the high-pressure mercury lamp.
References
1) Thomas MC, Baynes JW, Thorpe SR, and Cooper ME, Curr.
Drug Targets, 6, 453–474 (2005).
2) Vlassara H, Fuh H, Makita Z, Krungkrai S, Cerami A, and Bucala
R, Proc. Natl. Acad. Sci. USA, 289, 12043–12047 (1992).
3) Semba RD, Nicklett EJ, and Ferrucci L, J. Gerontol. A Biol. Sci.
Med. Sci., 65, 963–975 (2010).
T4-H (6). 1H-NMR (270 MHz, CDCl3): 0.93 (1H, d, J ¼ 7:6 Hz,
isopropyl-CH3), 1.25 (1H, s, OH), 1.39–1.53 (2H, m, 2-CH2-a, 6-CH2-
a), 1.61–1.71 (2H, m, isopropyl-CH, 2-CH2-b), 2.14 (1H, ddd,
J ¼ 12:8, 4.9, 2.6 Hz, 6-CH2-b), 2.27 (1H, ddd, J ¼ 13:5, 4.9, 2.9 Hz,
5-CH2-a), 2.44 (1H, dt, J ¼ 13:5, 4.2 Hz, 5-CH2-b), 4.76 (1H, dd,
J ¼ 11:5, 4.9 Hz, 3-CH), 4.86 (1H, d, J ¼ 1:3 Hz, olefinic-CH2-a), 4.96
(1H, d, J ¼ 1:3 Hz, olefinic-CH2-b), 8.37 (1H, s, OOH). HR-FD-MS:
m=z [M]þ; calcd. for C10H18O3, 186.1256; found, 186.1226.
4) Sasaki N, Fukatsu R, Tsuzuki K, Hayashi Y, Yoshida T, Fujii N,
Koike T, Wakayama I, Yanagihara R, Garruto R, Amano N, and
Makita Z, Am. J. Pathol., 153, 1149–1155 (1998).
5) Reddy VP, Zhu X, Perry G, and Smith MA, J. Alzheimers Dis.,
16, 763–774 (2009).
6) Forbes JM, Yee LTL, Thallas V, and Lassila M, Diabetes, 53,
1813–1823 (2004).
T-ol-H (8a). 1H-NMR (270 MHz, CDCl3): 1.18 (3H, s, 1- or 3-
CH3), 1.24 (3H, s, 1- or 3-CH3), 1.33 (3H, s, 30-CH3), 1.52–1.92 (2H,
m, 50-CH2-a and 60-CH2-a), 2.05–2.36 (3H, m, 50-CH2-b, 60-CH2-b,
and 10-CH), 5.69 (1H, ddd, J ¼ 10:2, 2.3, 1.7 Hz, 30-olefinic-CH), 6.08
(1H, ddd, J ¼ 10:2, 2.3, 1.0 Hz, 20-olefinic CH), 7.97 (1H, s, OOH).
13C-NMR (67.5 Hz, CDCl3), 20.4 (60-CH3), 24.8 (40-CH3), 26.1 (1- or
3-CH3), 28.1 (1- or 3-CH3), 47.2 (1-C), 72.7 (2-C), 78.5 (40-C), 130.3
(30-olefinic-CH), 134.1 (20-olefinic-CH). HR-FI-MS: m=z [M+H]þ;
calcd. for C10H18O3, 186.1256; found, 186.1252.
7) Brownlee M, Nature, 414, 813–820 (2001).
8) Thornalley JP, Endocrinol. Metab., 3, 149–166 (1996).
9) Vasan S, Zhang X, Kapurnitotu A, Bernhagen J, Teichberg S,
Basgen J, Wagle D, Shih D, Terlecky I, Bucala R, Cerami A,
Egan J, and Ulrich P, Nature, 382, 275–278 (1996).
10) Wolffenbuttel BHR, Boulanger CM, Crijns FRL, Huijberts
MSP, Poitevin P, Swennen GNM, Vasan S, Egan JJ, Ulrich P,
Cerami A, and Levy BI, Proc. Natl. Acad. Sci. USA, 95, 4630–
4634 (1998).
T-ol-H (8b). 1H-NMR (270 MHz, CDCl3): 1.14 (3H, s, 1- or 3-
CH3), 1.19 (3H, s, 1- or 3-CH3), 1.38–1.92 (7H, m, 10-CH, 20-, 50-, and
60-CH2), 4.53 (1H, t, J ¼ 2:9 Hz, 30-CH), 4.98 (2H, br d, J ¼ 0:7 Hz),
8.74 (1H, s, OOH). 13C-NMR (67.5 MHz, CDCl3): 26.1 (20-CH2), 27.5
(1- or 3-CH3), 28.4 (1- or 3-CH3), 30.4 (60-CH2), 31.2 (50-CH2), 42.0
(10-CH), 72.7 (2-C), 85.2 (37-CH), 113.8 (40-olefinic-CH2), 145.2
(40-olefinic-CH). FI-MS: m=z 187 ½M þ Hꢄþ.
11) Goh SY and Cooper ME, J. Clin. Endocrinol. Metab., 93, 1143–
1152 (2008).
12) Vasan S, Foiles P, and Founds H, Arch. Biochem. Biophys., 419,
89–96 (2003).
13) Adorjan B and Buchbauer G, Flavour Fragr. J., 25, 407–426
(2010).
14) Stratakis M, Sofikiti N, Baskakis C, and Raptis C, Tetrahedron
Lett., 45, 5433–5436 (2004).
T-ace-H (10). 1H-NMR (270 MHz, CDCl3): 1.34 (3H, s, 40-CH3),
1.39 and 1.44 (each 3H, each s, 1- and 3-CH3), 1.54–1.62 (2H, m,
50-CH2-a, 60-CH2-a), 1.98 (1H, m, 50-CH2-b), 2.00 (3H, s, –OCOCH3),
2.17–2.23 (1H, m, 60-CH2-b), 2.77–2.84 (1H, m, 10-CH), 5.65 (1H, dt,
J ¼ 10:2, 2.1, 1.8 Hz, 30-olefinic-CH), 5.92 (1H, dd, J ¼ 10:2, 1.9 Hz,
20-olefinic-CH), 7.48 (1H, s, 40-OOH). 13C-NMR (67.5 MHz, CDCl3):
22.1 (6-CH2), 22.5 (OCOCH3), 23.0 (40-CH3), 23.7 (1- or 3-CH3), 24.8
(1- or 3-CH3), 31.6 (5-CH2), 44.3 (10-CH), 78.6 (2-C), 84.8 (40-C),
129.9 (30-olefinic-CH), 133.7 (20-olefinic-CH). HR-FD-MS: m=z
½M þ Hꢄþ; calcd. for C12H20O4, 228.1362, found 228.1346.
15) Shailaja J, Sivagaru J, Robbins RJ, Ramamurty V, Snoj RB, and
Chandrasekhar J, Tetrahedron, 56, 6927–6943 (2000).
16) Bergmeyer HU, ‘‘Methods of Enzymatic Analysis’’ third ed.,
Academic Press, New York, pp. 136–139 (1984).
17) Li D, Shinya M, and Ubukata M, Pharmaceut. Biol., Early
Online: 1–5 (2012).
18) Lu J, Randell E, Han Y, Adeli K, Krahn J, and Meng QH, Clin.
Biochem., 44, 307–311 (2011).
19) Beisswenger PJ, Howell SK, Touchette AD, Lal S, and
Szwergold BS, Diabetes, 48, 198–202 (1999).
Assay for protective effects of terpene hydroperoxides on RNase A in
the presence of methylglyoxal (MGO). The enzyme activity of RNase A
was determined by the previously described method16,17) with slight
modifications. Briefly, 200 mL of the reaction mixture in a PCR tube
containing 1 mg mLꢀ1 RNase A and 10 mM MGO with or without the
test compound dissolved in 2 mL of EtOH in a 20 mM phosphate buffer
(pH 7.2) was incubated for 24 h at 37 ꢁC. After 200-fold dilution with a
5% glycerol solution, the mixture was transferred into a 1.5-mL
Eppendorf tube to be incubated with 0.1 mg mLꢀ1 of tRNA in a
60 mM phosphate buffer (pH 8.0) with a total volume of 250 mL. The
enzyme reaction was carried out by incubating this reaction mixture at
37 ꢁC for 20 min while shaking (300 rpm), and then quenched with
250 mL of a stop solution (0.86 g of La(NO3)3 and 7.1 mL of HClO4 in
100 mL of H2O). The resulting solution was centrifuged at 13,000 rpm
for 10 min at 4 ꢁC, and the absorbance at 260 nm was measured by a
GeneQuant pro RNA/DNA calculator spectrometer (Cambridge,
20) Yan J, Travis BR, and Borhan B, J. Org. Chem., 69, 9299–9302
(2004).
21) Nilsson U, Bergh M, Shao LP, and Karlberg AT, Chromatog-
raphia, 42, 199–205 (1996).
22) Matura M, Goosens A, Bordalo O, Garcia-Bravo B, Magnusson
K, Wrangsjo K, and Karlberg AT, Contact Dermatitis, 49, 15–
21 (2003).
23) Rudback J, Bergstrom MA, Borje A, Nilsson U, and Karlberg
¨
¨
¨
AT, Chem. Res. Toxicol., 25, 713–721 (2012).
24) Carson CF and Riley TV, J. Appl. Bacteriol., 78, 264–269 (1995).
25) Hammer KA, Carson CF, and Riley TV, J. Antimicrob.
Chemother., 42, 591–595 (1998).
26) Carson CF, Ashton L, Dry L, Smith DW, and Riley TV,
J. Antimicrob. Chemother., 48, 450–451 (2001).
27) Seyed TA, Qureshi ZA, Ali SM, Ahned S, and Ahmed SA,
Trop. Med. Int. Health, 4, 284–287 (1999).
þ
England). The remaining activity (%) ¼ ½ðAs ꢀ AbÞ ꢀ ðAc ꢀ AbÞꢄ=
28) Bassett IB, Pannowitz DL, and Barnetson RS, Med. J. Aust.,
153, 455–458 (1990).
ꢀ
þ
ꢀ
½ðAc ꢀ AbÞ ꢀ ðAc ꢀ AbÞꢄ ꢃ 100, where Ac is the absorbance of the
þ
control (RNase A and tRNA solution), Ac is the absorbance of the
29) Cross SE, Russell M, Southwell I, and Roberts MS, Eur. J.
Pharm. Biopharm., 69, 214–222 (2006).
AGEs control (RNase A, MGO and tRNA solution), Ab is the
absorbance of a blank (MGO and tRNA solution), and As is the
absorbance of the sample (RNase A, MGO, sample, and tRNA solution).
30) Reichling J, Landvatter U, Wagner H, Kostka KH, and Schaefer
UF, Eur. J. Pharm. Biopharm., 64, 222–228 (2008).