Tenn et al.
are intermediates both in peptide hormone formation11-25 and
in the catabolic pathway leading from purines to urea,26 and
they also have a role in the deleterious modification of DNA.27
While the function of the carbinolamide in these molecules is
in some cases unknown, with the diverse spectrum of biological
venues in which carbinolamides have been implicated, it is
surprising to realize how little is known about their inherent
reactivity. In fact, carbinolamides exhibit a form of reactivity
in water wherein the amide portion of their structure acts as a
leaving group in what could be formally described as an
elimination reaction (see Scheme 1).28-34
SCHEME 1. Accepted Mechanism for the
Hydroxide-Dependent Breakdown of Carbinolamides
their crucial role in the stability and structure of proteins37 that
are focused upon and not reactions involving their nucleofu-
gality. However, this form of reactivity is utilized to some
advantage in a number of biological systems.11-26 One example
involves the use of carbinolamides as intermediates in the
generation of R-amidated peptide hormones.11-25 (Approxi-
mately 50% of the known mammalian peptide hormones possess
a C-terminal R-amide function that is critical for proper hormone
function.)13 The generation of peptide hormones is mediated
by a bifunctional enzyme, peptidylglycine R-amidating mo-
nooxygenase (EC 1.14.17.3), which takes the glycine-extended
peptide precursor and oxidizes the pro-S hydrogen22 to create a
carbinolamide. In a second active site, the catalytic breakdown
of the carbinolamide yields the R-amidated peptide and glyox-
alate.38 The mechanism by which the breakdown of the
carbinolamide intermediates occurs enzymatically is not under-
stood but certain aspects of its catalysis have been elucidated.
The one criterion for the activity of the PAL enzyme that all
the investigators generally agree upon is the necessity of
Typically, when the topic of amides is broached, it is their
well-established stability with regard to acyl transfer35,36 and
(7) Asami, Y.; Kakeya, H.; Onose, R.; Yoshida, A.; Matsuzaki, H.; Osada,
H. Org. Lett. 2002, 4, 2845-2848.
(8) Nakai, R.; Ogawa, H.; Asai, A.; Ando, K.; Agatsuma, T.; Matsumiya,
S.; Akinaga, S.; Yamashita, Y.; Mizukami, T. J. Antibiot. 2000, 53, 294-
296.
(9) Singh, S. B.; Goetz, M. A.; Jones, E. T.; Bills, G. F.; Giacobbe, R.
A.; Herranz, L.; Stevensmiles, S.; Williams, D. L. J. Org. Chem. 1995, 60,
7040-7042.
(10) Kakeya, H.; Takahashi, I.; Okada, G.; Isono, K.; Osada, H. J.
Antibiot. 1995, 48, 733-735.
(11) Burgus, R.; Dunn, T. F.; Desiderio, D. M.; Ward, D. N.; Vale, W.;
Guillemin, R.; Felix, A. M.; Gillessen, D.; Studer, R. O. Endocrinology
1970, 86, 573-582.
(12) Driscoll, W. J.; Konig, S.; Fales, H. M.; Pannell, L. K.; Eipper, B.
A.; Mueller, G. P. Biochemistry 2000, 39, 8007-8016.
(13) Eipper, B. A.; Mains, R. E. Annu. ReV. Physiol. 1988, 50, 333-
344.
(14) Francisco, W. A.; Merkler, D. J.; Blackburn, N. J.; Klinman, J. P.
Biochemistry 1998, 37, 8244-8252.
(15) Freeman, J. C.; Villafranca, J. J. J. Am. Chem. Soc. 1993, 115,
4923-24.
Zn2+ 14,39-43
have indicated that not only is Zn2+ required for enzymatic
activity but also Fe3+ 40
The exact role of the metal ions in the
.
More recently, studies of the catalytic core of PAL
(16) Girard, B.; Ouafik, L.; Boudouresque, F. Cell Tissue Res. 1999,
298, 489-497.
.
(17) King, L.; Barnes, S.; Glufke, U.; Henz, M. E.; Kirk, M.; Merkler,
K. A.; Vederas, J. C.; Wilcox, B. J.; Merkler, D. J. Arch. Biochem. Biophys.
2000, 374, 107-117.
catalytic process has not been determined as arguments for a
catalytic role and a structural role for enzyme activity have both
been discussed.14,39-43 While the exact function of metals in
the catalytic cycle of PAL remains a matter of discussion, it is
generally believed that the breakdown of the carbinolamide
intermediate is catalyzed by acids and bases, with the possibility
of a metal-bound hydroxide or water molecule.42
Such a mechanism does not correlate with what is currently
known of the general reactivity of carbinolamides which, in the
hydroxide region of the pH-rate profile, are known to react
via a specific-base-catalyzed mechanism shown in Scheme
(18) Merkler, D. J.; Kulathila, R.; Ash, D. E. Arch. Biochem. Biophys.
1995, 317, 93-102.
(19) Merkler, D. J.; Kulathila, R.; Consalvo, A. P.; Young, S. D.; Ash,
D. E. Biochemistry 1992, 31, 7282-88.
(20) Moore, A. B.; May, S. W. Biochem. J. 1999, 341, 33-40.
(21) Nishino, S.; Kunita, M.; Kani, Y.; Ohba, S.; Matsushima, H.; Tokii,
T.; Nishida, Y. Inorg. Chem. Commun. 2000, 3, 145-148.
(22) Ramer, S. E.; Cheng, H.; Palcic, M. M.; Vederas, J. C. J. Am. Chem.
Soc. 1988, 110, 8526-8532.
(23) Rittel, W.; Maier, R.; Brugger, M.; Kamber, B.; Riniker, B.; Sieber,
P. Experientia 1976, 32, 246-248.
(24) Wilcox, B. J.; Ritenour-Rodgers, K. J.; Asser, A. S.; Baumgart, L.
E.; Baumgart, M. A.; Boger, D. L.; DeBlassio, J. L.; deLong, M. A.; Glufke,
U.; Henz, M. E.; King, L.; Merkler, K. A.; Patterson, J. E.; Robleski, J. J.;
Vederas, J. C.; Merkler, D. J. Biochemistry 1999, 38, 3235-3245.
(25) Young, S. D.; Tamburini, P. P. J. Am. Chem. Soc. 1989, 111, 1933-
34.
(36) Brown, R. S. In The Amide Linkage; Greenberg, A., Breneman, C.
M., Liebman, J. F., Eds.; Wiley-Interscience: New York, 2000.
(37) Berg, J. M.; Tymoczko, J. L.; Stryer, L. Biochemistry, 5th ed.; W.
H. Freeman and Company: New York, 2001.
(26) (a) Takada, Y.; Noguchi, T. Biochem. J. 1986, 235, 391-397. (b)
McIninch, J. K.; McIninch, J. D.; May, S. W. J. Biol. Chem. 2003, 278,
50091-50100.
(27) (a) Chung, F. L.; Nath, R. G.; Nagao, M.; Nishikawa, A.; Zhou, G.
D.; Randerath, K. Mutat. Res. 1999, 424, 71-81. (b) Marnett, L. J. Mutat.
Res. 1999, 424, 83-95. (c) Nair, J.; Barbin, A.; Velic, I.; Bartsch, H. Mutat.
Res. 1999, 424, 59-69.
(38) The monofunctional analogues of the coupled enzyme have also
been isolated (peptidyl R-hydroxylating monooxygenase, PHM., EC
1.14.17.3) and PAL (peptidyl-R-hydroxylamidoglycolate layase, EC 4.3.2.5);
however, in vertebrates these enzymes are found in the bifunctional form.
(39) Bell, J.; Ash, D. E.; Snyder, L. M.; Kulathila, R.; Blackburn, N. J.;
Merkler, D. J. Biochemistry 1997, 36, 16239-16246.
(28) Bundgaard, H. In Design of Prodrugs; Bundgaard, H., Ed.;
Elsevier: Amsterdam, The Netherlands, 1985; pp 1-92.
(29) Bundgaard, H.; Buur, A. Int. J. Pharm. 1987, 37, 185-194.
(30) Bundgaard, H.; Johansen, M. Int. J. Pharm. 1980, 5, 67-77.
(31) Bundgaard, H.; Johansen, M. Int. J. Pharm. 1984, 22, 45-56.
(32) Johansen, M.; Bundgaard, H. Arch. Pharm. Chem. Sci. Ed. 1979,
7, 175-192.
(40) De, M.; Bell, J.; Blackburn, N. J.; Mains, R. E.; Eipper, B. A. J.
Biol. Chem. 2006, 281, 20873-20882.
(41) Katopodis, A. G.; Ping, D. S.; Smith, C. E.; May, S. W. Biochemistry
1991, 30, 6189-6194.
(42) Kolhekar, A. S.; Bell, J.; Shiozaki, E. N.; Jin, L. X.; Keutmann, H.
T.; Hand, T. A.; Mains, R. E.; Eipper, B. A. Biochemistry 2002, 41, 12384-
12394.
(33) Tenn, W. J.; French, N. L.; Nagorski, R. W. Org. Lett. 2001, 3,
75-78.
(43) Merkler, D. J.; Schramm, V. L. Biochemistry 1993, 32, 5792-5799.
(44) (a) Marshall, D. R.; Thomas, P. J.; Stirling, C. J. M. J. Chem. Soc.,
Chem. Commun. 1975, 940-941. (b) Thomas, P. J.; Stirling, C. J. M. J.
Chem. Soc., Chem. Commun. 1976, 829-830. (c) Marshall, D. R.; Thomas,
P. J.; Stirling, C. J. M. J. Chem. Soc., Perkin Trans. 2 1977, 1898-1909.
(d) Stirling, C. J. M. Acc. Chem. Res. 1979, 12, 198-203.
(34) Mennenga, A. G.; Johnson, A. L.; Nagorski, R. W. Tetrahedron
Lett. 2005, 46, 3079-3083.
(35) The Chemistry of Amides; Zabicky, J., Ed.; Interscience Publish-
ers: New York, 1970.
6076 J. Org. Chem., Vol. 72, No. 16, 2007