Journal of the American Chemical Society
Page 6 of 8
T. P. Accessing the Synthetic Chemistry of Radical Ions. Eur. J. Org.
Acids. Org. Lett. 2012, 14, 5006. (g) Hickey, D.; McCammant, M.;
Giroud, F.; Sigman, M.; Minteer, S. Hybrid Enzymatic and Organic
Electrocatalytic Cascade for the Complete Oxidation of Glycerol. J.
Am. Chem. Soc. 2014, 136, 15917. (h) Zhao, M.; Li, J.; Mano, E.; Song,
Z.; Tschaen, D.; Grabowski, E.; Reider, P. Oxidation of Primary
Alcohols to Carboxylic Acids with Sodium Chlorite Catalyzed by
TEMPO and Bleach. J. Org. Chem. 1999, 64, 2564. See also ref. 5c.
Stoichiometric oxidation: (i) Bailey, W. F.; Bobbitt, J. M. Mechanism
of the Oxidation of Alcohols by Oxoammonium Cations. J. Org. Chem.
2007, 72, 4504. (j) Ganem, B. Biological spin labels as organic
reagents. Oxidation of alcohols to carbonyl compounds using nitroxyls.
J. Org. Chem. 1975, 40, 1998. (k) Bobbitt, J. M. Oxoammonium Salts.
4-Acetylamino-2,2,6,6-tetramethylpiperidine-1-oxoammonium
Chem. 2012, 2012, 3359. (d) Moeller, K. M. Using Physical Organic
Chemistry To Shape the Course of Electrochemical Reactions. Chem.
Rev. 2018, 118, 4817.
1
2
3
4
5
6
7
8
2. (a) Studer, A.; Curran, D. P. Catalysis of Radical Reactions: A
Radical Chemistry Perspective. Angew. Chem., Int. Ed. 2016, 55, 58.
(b) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Dual Catalysis Strategies in
Photochemical Synthesis. Chem. Rev. 2016, 116, 10035. (c)
Narayanam, J. M. R.; Stephenson, C. R. Visible light photoredox
catalysis: applications in organic synthesis. J. Chem. Soc. Rev. 2011,
40, 102. (d) Francke, R.; Little, R. D. Redox catalysis in organic
electrosynthesis: basic principles and recent developments. Chem. Soc.
Rev. 2014, 43, 2492. (e) Yan, M.; Kawamata, Y.; Baran, P. S. Synthetic
Organic Electrochemical Methods Since 2000: On the Verge of a
Renaissance. Chem. Rev. 2017, 117, 13230. (f) Crossley, S. W. M.;
Martinez, R. M.; Obradors, C.; Shenvi, R. A. Mn-, Fe-, and Co-
Catalyzed Radical Hydrofunctionalizations of Olefins. Chem. Rev.
2016, 116, 8912.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Perchlorate:ꢀ A Stable and Convenient Reagent for the Oxidation of
Alcohols. Silica Gel Catalysis. J. Org. Chem. 1998, 63, 9367.
9. For examples, see: (a) Miles, K.; Abrams, M.; Landis, C.; Stahl,
S. KetoABNO/NOx Cocatalytic Aerobic Oxidation of Aldehydes to
Carboxylic Acids and Access to α -Chiral Carboxylic Acids via
3. (a) Bobbitt, J. M.; Brückner, C.; Merbouh, N. Oxoammonium
and Nitroxide-Catalyzed Oxidation of Alcohols. Org. React. 2009, 74,
103. (b) Wertz, S.; Studer, A. Nitroxide-catalyzed transition-metal-free
aerobic oxidation processes. Green Chem. 2013, 15, 3116. (c)
Leadbeater, N. E.; Bobbitt, J. M. TEMPO-Derived Oxoammonium
Salts as Versatile Oxidizing Agents. Aldrichim. Acta 2014, 47, 65.
Sequential
Asymmetric
Hydroformylation/Oxidation.
Org.
Lett. 2016, 18, 3590. (b) Rafiee, M.; Konz, Z.; Graaf, M.; Koolman, H.;
Stahl, S. Electrochemical Oxidation of Alcohols and Aldehydes to
Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative
to “Anelli” and “Pinnick” Oxidations. ACS Catal. 2018, 8, 6738.
10. For a review, see: (a) Bartelson, A.; Lambert, K.; Bobbitt, J.;
Bailey, W. Recent Developments in the Nitroxide‐Catalyzed Oxidation
4. Nutting,
J.
E.;
Rafiee,
M.
R.;
Stahl,
S.
S. Tetramethylpiperidine N-Oxyl (TEMPO), Phthalimide N-Oxyl
(PINO), and Related N-Oxyl Species: Electrochemical Properties and
Their Use in Electrocatalytic Reactions. Chem. Rev. 2018, 118, 4834.
5. (a) Qian, X.-Y.; Li, S.-Q.; Song, J.; Xu, H.-C. TEMPO-
Catalyzed Electrochemical C–H Thiolation: Synthesis of
Benzothiazoles and Thiazolopyridines from Thioamides. ACS Catal.
2017, 7, 2730. (b) Peterson, B. M.; Lin, S.; Fors, B. P.
Electrochemically Controlled Cationic Polymerization of Vinyl Ethers.
J. Am. Chem. Soc. 2018, 140, 2076. (c) Furukawa, K.; Shibuya, M.;
Yamamoto, Y. Chemoselective Catalytic Oxidation of 1,2-Diols to α-
Hydroxy Acids Controlled by TEMPO–ClO2 Charge-Transfer
Complex. Org. Lett. 2015, 17, 2282.
6. For examples of stable TEMPO–X-type adducts formed via
single-electron transfer, see: (a) Li, Y.; Pouliot, M.; Vogler, T.; Renaud,
P.; Studer, A. α-Aminoxylation of Ketones and β-Chloro-α-
aminoxylation of Enones with TEMPO and Chlorocatecholborane.
Org. Lett. 2012, 14, 4474. (b) Wang, X.; Ye, Y.; Zhang, S.; Feng, J.;
Xu, Y.; Zhang, Y.; Wang, J. Copper-Catalyzed C(sp3)–C(sp3) Bond
Formation Using a Hypervalent Iodine Reagent: An Efficient Allylic
Trifluoromethylation. J. Am. Chem. Soc. 2011, 133, 16410.
of
Amines:
Preparation
of
Imines
and
Nitriles. ChemCatChem. 2016, 8, 3421-3430. For examples, see: (b)
Lennox, A.; Goes, S.; Webster, M.; Koolman, H.; Djuric, S.; Stahl, S.
Electrochemical Aminoxyl-Mediated α-Cyanation of Secondary
Piperidines for Pharmaceutical Building Block Diversification. J. Am.
Chem. Soc. 2018, 140, 11227. (c) Semmelhack, M. F.; Schmid, C. R.
Nitroxyl-mediated electro-oxidation of amines to nitriles and carbonyl
compounds. J. Am. Chem. Soc. 1983, 105, 6732. (d) Kim, J.; Stahl, S.
Cu/Nitroxyl-Catalyzed Aerobic Oxidation of Primary Amines into
Nitriles at Room Temperature. ACS Catal. 2013, 3, 1652. (e) Sonobe,
T.; Oisaki, K.; Kanai, M. Catalytic aerobic production of imines en
route to mild, green, and concise derivatizations of amines. Chem. Sci.
2012, 3, 3249. (f) Wu, Y.; Yi, H.; Lei, A. Electrochemical Acceptorless
Dehydrogenation of N-Heterocycles Utilizing TEMPO as Organo-
Electrocatalyst. ACS Catal. 2018, 8, 1192. (g) Romero, N. A.; Margrey,
K. A.; Tay, N. E.; Nicewicz, D. A. Site-selective arene C-H amination
via photoredox catalysis. Science 2015, 349, 1326. (h) Somfai, P.; Yu,
L. Synthesis of α-Keto Amides by a Pyrrolidine/TEMPO-Mediated
Oxidation of α-Keto Amines. Synlett 2016, 27, 2587. (g) Wertz, S.;
Studer, A. Metal‐Free 2,2,6,6‐Tetramethylpiperidin‐1‐yloxy Radical
(TEMPO) Catalyzed Aerobic Oxidation of Hydroxylamines and
Alkoxyamines to Oximes and Oxime Ethers. Helv. Chim. Acta 2012,
95, 1758.
11. (a) Tarantino, K. T.; Miller, D. C.; Callon, T. A.; Knowles, R. R.
Bond-Weakening Catalysis: Conjugate Aminations Enabled by the
Soft Homolysis of Strong N–H Bonds. J. Am. Chem. Soc. 2015, 137,
6440. See also refs. 5a, 5b. Stoichiometric reaction: (b) Xu, F.; Zhu, L.;
Zhu, S.; Yan, X.; Xu, H.-C. Electrochemical Intramolecular
Aminooxygenation of Unactivated Alkenes. Chem. Eur. J. 2014,
20, 12740.
12. Griesser, M.;Shah, R.; Van Kessel, T. A.; Zilka, O.; Haidasz, A.
E.; Pratt, A. D. The Catalytic Reaction of Nitroxides with Peroxyl
Radicals and Its Relevance to Their Cytoprotective Properties. J. Am.
Chem. Soc. 2018, 140, 3798.
7. TEMPO has been used (stoichiometrically or catalytically) in
lieu of transition metals for formal C–C cross coupling. See: (a)
Murarka, S.; Studer, A. Transition Metal‐Free TEMPO‐Catalyzed
Oxidative Cross‐ Coupling of Nitrones with Alkynyl‐Grignard
Reagents. Adv. Synth. Catal. 2011, 353, 2708. (b) Maji, M. S.; Murarka,
S.; Studer, A. Transition-Metal-Free Sonogashira-Type Coupling
of ortho-Substituted Aryl and Alkynyl Grignard Reagents by Using
2,2,6,6-Tetramethylpiperidine-N-oxyl Radical as an Oxidant. Org.
Lett. 2010, 12, 3878.
8. For examples, see: (a) Semmelhack, M. F.; Chou, C. S.; Cortes,
D. A. Nitroxyl-mediated electrooxidation of alcohols to aldehydes and
ketones. J. Am. Chem. Soc. 1983, 105, 4492. (b) Hoover, J.; Stahl, S.
Highly Practical Copper(I)/TEMPO Catalyst System for
Chemoselective Aerobic Oxidation of Primary Alcohols. J. Am. Chem.
Soc. 2011, 133, 16901. (c) Badalyan, A.; Stahl, S. S. Cooperative
electrocatalytic alcohol oxidation with electron-proton-transfer
mediators. Nature 2016, 535, 406–410. (d) Liu, R.; Liang, X.; Dong,
C.; Hu, X. Transition-Metal-Free:ꢀ A Highly Efficient Catalytic
Aerobic Alcohol Oxidation Process. J. Am. Chem. Soc. 2004, 126,
4112. (e) Shibuya, M.; Osada, Y.; Sasano, Y.; Tomizawa, M.;
Iwabuchi, Y. Highly Efficient, Organocatalytic Aerobic Alcohol
Oxidation. J. Am. Chem. Soc. 2011, 133, 6497. (f) Shibuya, M.; Doi,
R.; Shibuta, T.; Uesugi, S.; Iwabuchi, Y. Organocatalytic One-Pot
Oxidative Cleavage of Terminal Diols to Dehomologated Carboxylic
13. Fu, N.; Sauer, G.; Saha, A.; Loo, A.; Lin, S. Metal-catalyzed
electrochemical diazidation of alkenes. Science 2017, 357, 575.
14. Minisci, F. Free-radical additions to olefins in the presence of
redox systems. Acc. Chem. Res. 1975, 8, 165.
15. (a) Magnus, P., Roe, M. B. and Hulme, C. New trialkylsilyl enol
ether chemistry: direct 1,2-bis-azidonation of triisopropylsilyl enol
ethers: an azido-radical addition process promoted by TEMPO. J.
Chem. Soc., Chem. Commun. 1995, 263. (b) Magnus, P.; Lacour, J.;
Evans, P. A.; Roe, M. B.; Hulme, C. Hypervalent Iodine Chemistry:ꢀ
New Oxidation Reactions Using the Iodosylbenzene−Trimethylsilyl
ACS Paragon Plus Environment