Journal of the American Chemical Society
Communication
(c) Skucas, E.; Kong, J. R.; Krische, M. J. J. Am. Chem. Soc. 2007, 129,
7242. (d) Kong, J. R.; Krische, M. J. J. Am. Chem. Soc. 2006, 128,
16040.
(10) (a) Discodermolide: Gunasekera, S. P.; Gunasekera, M.;
Longley, R. E.; Schulte, G. K. J. Org. Chem. 1990, 55, 4912. (b)
Dictyostatin: Pettit, G. R.; Cichacz, Z. A.; Gao, F.; Boyd, M. R.;
Schmidt, J. M. J. Chem. Soc., Chem. Commun. 1994, 1994, 1111.
(11) van Leeuwen, P. W. N. M.; Kamer, P. C. J.; Reek, J. N. H.;
Dierkes, P. Chem. Rev. 2000, 100, 2741.
Health (General Medical Sciences, R01 GM075107) is
gratefully acknowledged. We are grateful to Mr. William
Coldren and Professor Chris Hadad for help with the DFT
calculations.
REFERENCES
■
(1) (a) Sharma, R. K.; RajanBabu, T. V. J. Am. Chem. Soc. 2010, 132,
3295. (b) Page, J. P.; RajanBabu, T. V. J. Am. Chem. Soc. 2012, 134,
6556.
(12) We have carried out Co-catalayzed asymmetric HV of E/Z-
mixtures of 16 and 17 and observed results similar to what is
documented in Table 1 for E/Z-8. See Supporting Information for
details.
(2) For other reports of Co-catalyzed hydroalkenylations, see:
(a) Hilt, G. Eur. J. Org. Chem. 2012, 4441. (b) Grutters, M. M. P.;
Muller, C.; Vogt, D. J. Am. Chem. Soc. 2006, 128, 7414. (c) Hilt, G.;
̈
(13) Kinetic preference for the formation of an anti-crotyl-η3-
complex, and its subsequent isomerization to the more stable syn-
isomer is known in {[P(OEt)3]4Ni-H}+ additions. See: Tolman, C. A.
J. Am. Chem. Soc. 1970, 92, 6777.
Luers, S. Synthesis 2002, 609. (d) Hilt, G.; du Mesnil, F.-X.; Luers, S.
̈
̈
Angew. Chem., Int. Ed. 2001, 40, 387. (e) Iwamoto, M.; Yuguchi, S.
Bull. Chem. Soc. Jpn. 1968, 41, 150. (f) Wittenberg, D. Angew. Chem.,
Int. Ed. Engl. 1964, 3, 153.
(14) (a) Consiglio, G.; Waymouth, R. M. Chem. Rev. 1989, 89, 257.
(b) Trost, B. M.; Lee, C. Asymmetric Allylic Alkylation Reactions. In
Catalytic Asymmteric Synthesis; Ojima, I., Ed.; Wiley-VCH: New York,
2000; pp 593−649.
(3) For recent reviews of hydrovinylation of alkenes, see:
(a) RajanBabu, T. V. Synlett 2009, 853. (b) RajanBabu, T. V. Chem.
Rev. 2003, 103, 2845. Reports of asymmetric hydrovinylation of 1,3-
dienes: (c) Saha, B.; Smith, C. R.; RajanBabu, T. V. J. Am. Chem. Soc.
2008, 130, 9000. (d) Zhang, A.; RajanBabu, T. V. J. Am. Chem. Soc.
(15) We have carried out high-level DFT calculations (Gaussian 09,
geometries optimized with the 6-31G* basis set in conjunction with
the B3LYP) on two of the dienes (8) and (16). Not surprisingly, the
E-isomer is the more stable one (KE/Z = 3924 and 24.8, respectively,
298 K), and both isomers exist almost exclusively in the s-trans form.
The (Z)-isomer, once generated, will also exist exclusively in the s-
trans conformation (Ks‑trans/s‑cis = 1998 and 612, respectively),
preventing a stable η4-coordination to Co(II). See Supporting
Information for details of these calculations and references to
experimental data on E/Z-isomerization of 1,3-pentadiene.
(16) We have also observed up to 69% conversion of a (Z/E)-
mixture (46:54) of 16 to a product of 1,5-H-shift (15, R = C7H14) by
using (DPPE)CoBr2 (20 mol%)/Zn/ZnI2 (40 mol%) for 72 h (see
Supporting Information for details).
2006, 128, 54. (e) Bogdanovic, B.; Henc, B.; Loser, A.; Meister, B.;
́
̈
Pauling, H.; Wilke, G. Angew. Chem., Int. Ed. Engl. 1973, 12, 954.
(4) For other reports of a [LCoH]+ intermediate in related reactions,
see: (a) Britovsek, G. J. P.; Bruce, M.; Gibson, V. C.; Kimberley, B. S.;
Maddox, P. J.; Mastroianni, S.; McTavish, S. J.; Redshaw, C.; Solan, G.
A.; Stromberg, S.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc.
̈
1999, 121, 8728. (b) Bianchini, C.; Giambastiani, G.; Meli, A.; Toti, A.
Organometallics 2007, 26, 1303. (c) Tellmann, K. P.; Gibson, V. C.;
White, A. J. P.; Williams, D. J. Organometallics 2005, 24, 280.
(d) Tellmann, K. P.; Humphries, M. J.; Rzepa, H. S.; Gibson, V. C.
Organometallics 2004, 23, 5503. (e) Zhang, G.; Scott, B. L.; Hanson, S.
K. Angew. Chem., Int. Ed. 2012, 51, 12102. A complex [(DPPE)2CoH]+,
isoelectronic with 4 has been described in the literature: (f) Ciancanelli,
R.; Noll, B. C.; DuBois, D. L.; DuBois, M. R. J. Am. Chem. Soc. 2002,
124, 2984.
(5) Several examples of metal and ligand-dependent isomerization of
alkenes to seemingly less stable isomers have been described in the
literature. (a) Ni-catalyzed isomerization of allyl ethers to (Z)-vinyl
ethers: Wille, A.; Tomm, S.; Frauenrath, H. Synthesis 1998, 305 and
references cited therein. (b) Corresponding Ir(I)-catalyzed reaction
give the (E)-isomers: Nelson, S. G.; Bungard, C. J.; Wang, K. J. Am.
Chem. Soc. 2003, 125, 13000. (c) Larsen, C. R.; Grotjahn, D. B. J. Am.
Chem. Soc. 2012, 134, 10357; Correction: J. Am. Chem. Soc. 2012, 134,
15604. (d) Co-catalyzed isomerization of an E/Z-mixture of a 1,3-
diene to a (Z)-I,3-diene: Punner, F.; Schmidt, A.; Hilt, G. Angew.
̈
Chem., Int. Ed. 2012, 51, 1270. (e) Co-catalyzed isomerization of
internal to terminal alkene: Obligacion, J. V.; Chirik, P. J. J. Am. Chem.
Soc. 2013, 135, 19107. (f) Co-catalyzed terminal to internal Z-
selective isomerization: Chen, C.; Dugan, T. R.; Brennessel, W. W.;
Weix, D. J.; Holland, P. L. J. Am. Chem. Soc. 2014, 136, 945. For a
review, see: (g) Donohoe, T. J.; O’Riordan, T. J. C.; Rosa, C. P. Angew.
Chem., Int. Ed. 2009, 48, 1014.
(6) Precise proportion of isomeric compounds were determined by
gas chromatography and NMR. See Supporting Information for details
including chromatograms of products from various reactions.
(7) At higher temperatures (−10 °C, 1 atm ethylene) (DPPB)
CoCl2/MAO converts both (Z)- and (E)-8 to racemic 9 in
quantitative yield. See Supporting Information for details.
(8) (a) Ikeda, Y.; Ukai, J.; Ikeda, N.; Yamamoto, H. Tetrahedron
1987, 43, 731. (b) Wang, S.; West, F. G. Synthesis 2002, 99. (c) de
Vicente, J.; Huckins, J. R.; Rychnovsky, S. D. Angew. Chem., Int. Ed.
2006, 45, 7258. (d) Billard, F.; Robiette, R.; Pospísi
2012, 77, 6358.
̂
l. J. Org. Chem.
(9) (a) Ikeda, Y.; Ukai, J.; Ikeda, N.; Yamamoto, H. Tetrahedron
1987, 43, 723. (b) Paterson, I.; Schlapbach, A. Synlett 1995, 498.
Syntheses of (Z)-dienyl alcohols and amines via Rh-catalyzed reductive
coupling of acetylene with aldehydes and imines have been reported.
6218
dx.doi.org/10.1021/ja501979g | J. Am. Chem. Soc. 2014, 136, 6215−6218