Edge Article
Chemical Science
10 min, 12 000Âg) before analysis by HPLC. For reactions with 21 S. Cadel-Six, C. Dauga, A. M. Castets, R. Rippka, C. Bouchier,
low yield, multiple 10 mL reactions were performed and
combined prior to purication by semi-prep HPLC. For trypto-
N. Tandeau de Marsac and M. Welker, Mol. Biol. Evol., 2008,
25, 2031–2041.
´
phan and N-phenylanthranilic acid, absorbance was measured 22 C. Dong, S. Flecks, S. Unversucht, C. Haupt, K.-H. van Pee
at 280 nm. All other substrate and products absorbance were and J. H. Naismith, Science, 2005, 309, 2216–2219.
measured at 254 nm, with a 5 min gradient 5–75% H2O/aceto- 23 E. Yeh, L. Cole, E. Barr and J. Bollinger, Biochemistry, 2006,
nitrile + 0.1% formic acid. Products were subsequently charac- 45, 7904–7912.
terised using 1D and 2D NMR, LRMS, HRMS and UV and are in 24 E. Yeh, L. C. Blasiak, A. Koglin, C. L. Drennan and
good agreement with the literature data (see ESI†).
C. T. Walsh, Biochemistry, 2007, 46, 1284–1292.
25 A rare example of a avin-dependent halogenase with
specicity for bromide and iodide, but not chloride, was
recently reported: V. Agarwal, A. A. El Gamal,
K. Yamanaka, D. Poth, R. D. Kersten, M. Schorn,
E. E. Allen and B. S. Moore, Nat. Chem. Biol., 2014, 10,
640–647.
Acknowledgements
We acknowledge BBSRC (grants BB/K00199X/1 & BB/I020764/1),
GlaxoSmithKline and CoEBio3 for nancial support. We
acknowledge Diamond Light Source for time on beamlines i02,
i03, i04 & i04-1 under proposal MX8997.
26 D. Khare, B. Wang, L. Gu, J. Razelun, D. H. Sherman,
˚
W. H. Gerwick, K. Hakansson and J. L. Smith, Proc. Natl.
Acad. Sci. U. S. A., 2010, 107, 14099–14104.
27 P. C. Dorrestein, E. Yeh, S. Garneau-Tsodikova, N. L. Kelleher
and C. T. Walsh, Proc. Natl. Acad. Sci. U. S. A., 2005, 102,
13843–13848.
Notes and references
1 Y. Lu, Y. Liu, Z. Xu, H. Li, H. Liu and W. Zhu, Expert Opin.
Drug Discovery, 2014, 7, 375–383.
´
¨
28 S. Zehner, A. Kotzsch, B. Bister, R. D. Sussmuth, C. Mendez,
2 P. Jeschke, Pest Manage. Sci., 2009, 66, 10–27.
3 O. Bolton, K. Lee, H.-J. Kim, K. Y. Lin and Ji. Kim, Nat. Chem.,
2011, 3, 207–212.
´
J. A. Salas and K.-H. van Pee, Chem. Biol., 2005, 12, 445–452.
29 J. Zeng and J. Zhan, Biotechnol. Lett., 2011, 33, 1607–1613.
4 K. C. Nicolaou, P. G. Bulger and D. Sarlah, Angew. Chem., Int. 30 C. Seibold, H. Schnerr, J. Rumpf, A. Kunzendorf,
Ed. Engl., 2005, 44, 4442–4489.
C. Hatscher, T. Wage, A. J. Ernyei, C. Dong, J. H. Naismith
´
5 F.-S. Han, Chem. Soc. Rev., 2013, 42, 5270–5298.
6 J. F. Hartwig, Nature, 2008, 455, 314–322.
7 C. Valente, S. Calimsiz, K. H. Hoi, D. Mallik, M. Sayah and
M. G. Organ, Angew. Chem., Int. Ed., 2012, 51, 3314–3332.
8 S. Z. Tasker, E. A. Standley and T. F. Jamison, Nature, 2014,
509, 299–309.
and K.-H. Van Pee, Biocatal. Biotransform., 2006, 24, 401–408.
31 J. R. Heemstra and C. T. Walsh, J. Am. Chem. Soc., 2008, 130,
14024–14025.
32 S. Kirner, P. E. Hammer, D. S. Hill, A. Altmann, I. Fischer,
´
L. J. Weislo, M. Lanahan, K. Van Pee and J. M. Ligon, J.
Bacteriol., 1998, 180, 1939–1943.
´
˜
9 Z. Zuo, D. T. Ahneman, L. Chu, J. A. Terrett, A. G. Doyle and 33 C. Sanchez, L. Zhu, A. F. Brana, A. P. Salas, J. Rohr,
´
D. W. C. MacMillan, Science, 2014, 345, 437–440.
10 E. J. Cho, T. D. Senecal, T. Kinzel, Y. Zhang, D. A. Watson and
S. L. Buchwald, Science, 2010, 328, 1679–1681.
11 F. Alonso, I. P. Beletskaya and M. Yus, Chem. Rev., 2002, 102,
4009–4091.
C. Mendez and J. A. Salas, Proc. Natl. Acad. Sci. U. S. A.,
2005, 102, 461–466.
34 C. B. Poor, M. C. Andorfer and J. C. Lewis, ChemBioChem,
2014, 15, 1286–1289.
35 M. Frese and N. Sewald, Angew. Chem., Int. Ed., 2015, 54,
298–301.
12 S. A. Rowlands, A. K. Hall, P. G. McCormick, R. Street,
¨
´
R. J. Hart, G. F. Ebell and P. Donecker, Nature, 1994, 367, 36 M. Holzer, W. Burd, H.-U. Reibig and K.-H. van Pee, Adv.
223. Synth. Catal., 2001, 343, 591–595.
13 B. C. Kelly, M. G. Ikonomou, J. D. Blair, A. E. Morin and 37 J. T. Payne, M. C. Andorfer and J. C. Lewis, Angew. Chem., Int.
F. A. P. C. Gobas, Science, 2007, 317, 236–239.
Ed. Engl., 2013, 52, 5271–5274.
14 J. M. Suita, A. Horowitz, D. R. Shelton and J. M. Tiedje, 38 M. Frese, P. H. Guzowska, H. Voß and N. Sewald,
Science, 1982, 218, 1115–1117. ChemCatChem, 2014, 6, 1270–1276.
15 B. Xu, H.-Z. Zhu, Y.-L. Lin, K.-Y. Shen, W.-H. Chu, C.-Y. Hu, 39 X. Zhu, W. De Laurentis, K. Leang, J. Herrmann, K. Ihlefeld,
´
K.-N. Tian, S. A. Mwakagenda and X.-Y. Bi, Water, Air, Soil
Pollut., 2012, 223, 4429–4436.
K.-H. van Pee and J. H. Naismith, J. Mol. Biol., 2009, 391, 74–
85.
´
16 K.-H. van Pee, C. Dong, S. Flecks, J. Naismith, E. P. Patallo 40 B. Ojo and B. K. Chowdhury, Synth. Commun., 2012, 42,
and T. Wage, Adv. Appl. Microbiol., 2006, 59, 127–157.
1002–1009.
17 P. Bernhardt, T. Okino, J. M. Winter, A. Miyanaga and 41 D. Roche, K. Prasad, O. Repic and T. J. Blacklock,
B. S. Moore, J. Am. Chem. Soc., 2011, 4268–4270.
Tetrahedron Lett., 2000, 41, 2083–2085.
18 A. Butler and M. Sandy, Nature, 2009, 460, 848–854.
42 B. D. Ames and C. T. Walsh, Biochemistry, 2010, 49, 3351–3365.
19 C. S. Neumann, D. G. Fujimori and C. T. Walsh, Chem. Biol., 43 S. W. Haynes, X. Gao, Y. Tang and C. T. Walsh, J. Am. Chem.
2008, 15, 99–109. Soc., 2012, 134, 17444–17447.
20 P. Gao and Y. Huang, Appl. Environ. Microbiol., 2009, 75, 44 S. W. Haynes, X. Gao, Y. Tang and C. T. Walsh, ACS Chem.
4813–4820.
Biol., 2013, 8, 741–748.
This journal is © The Royal Society of Chemistry 2015
Chem. Sci., 2015, 6, 3454–3460 | 3459