Novel Organic Semiconductors Based on Phenyl and Phenylthienyl Derivatives for Organic Thin-Film Transistors
Lee et al.
highest device performance with carrier mobility as high
4. (a) I. Kang, S. M. Park, D. H. Lee, S. H. Han, D. S. Chung, Y. H.
Kim, and S. K. Kwon, Sci. Adv. Mater. 5, 199 (2013); (b) D. D.
Tullio, M. Magliulo, G. Colafemmina, K. Manoli, L. Torsi, and
G. Palazzo, Sci. Adv. Mater. 5, 1922 (2013).
as 1ꢂ7 ×10−5 cm2/Vs.
3.6. Thin-Film Microstructure and Morphology
Film microstructure and surface morphology of vacuum-
deposited films were characterized using wide-angle ꢈ–2ꢈ
XRD and AFM to evaluate device performance. Devices
with high electrical performance generally exhibit films
with high film crystallinity and large grain size. Figure 5
shows conventional ꢈ/2ꢈ XRD scans of thin films based
on compounds 1–6. As shown, all of films did not exhibit
any significant Bragg reflections, indicating poor film tex-
ture. Furthermore, surface morphologies of organic semi-
conductor thin films (70 nm) were characterized by AFM
(Fig. 6). As shown, thin films of phenyl and phenylthienyl
derivatives showed either ball-shaped grains with small
grain sizes (compounds 1, 3, and 4) or relatively smooth
surface (compounds 2, 5, and 6).
5. J. E. Anthony, J. S. Brooks, D. L. Eaton, and S. R. Parkin, J. Am.
Chem. Soc. 123, 9482 (2001).
6. T. Okamoto and Z. Bao, J. Am. Chem. Soc. 129, 10308 (2007).
7. K. Xiao, Y. Q. Liu, T. Qi, W. Zhang, F. Wang, J. H. Gao, W. F. Qiu,
Y. Q. Ma, G. L. Cui, S. Y. Chen, X. W. Zhan, G. Yu, J. G. Qin,
W. P. Hu, and D. Zhu, J. Am. Chem. Soc. 127, 13281 (2005).
8. I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. Macdonald,
M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M. L.
Chabinyc, R. J. Kline, M. D. McGehee, and M. F. Toney, Nat. Mater.
5, 328 (2006).
9. Y. Wu, P. Liu, S. Gardner, and B. S. Ong, Chem. Mater. 17, 221
(2005).
10. M. C. Chen, C. Kim, S. Y. Chen, Y. J. Chiang, M. C. Chung,
A. Facchetti, and T. J. Marks, J. Mater. Chem. 18, 1029 (2008).
11. (a) H. Yan, Z. H. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz,
M. Kastler, and A. Facchetti, Nature 457, 679 (2009); (b) B. Kang,
M. Jang, Y. Chung, H. Kim, S. K. Kim, J. H. Oh, and K. Cho, Nat.
Commun. 5, 4752 (2014).
12. (a) M. Alonzi, D. Lanari, A. Marrocchi, C. Petrucci, and L. Vaccaro,
RSC Advances 3, 23909 (2013); (b) C. Kim, A. Facchetti, and T. J.
Marks, Science 318, 76 (2007).
13. (a) T. K. An, S. M. Park, S. Nam, J. Hwang, S. J. Yoo, M. J. Lee,
W. M. Yun, J. Jang, H. Cha, J. Hwang, S. Park, J. Kim, D. S.
Chung, Y. H. Kim, S. K. Kwon, and C. E. Park, Sci. Adv. Mater.
5, 1323 (2013); (b) A. Chowdhury, B. Biswas, and B. Mallik, Sci.
Adv. Mater. 5, 1297 (2013); (c) O. T. Kwon, J. D. Seo, W. K. Han,
K. W. Jang, J. W. Hong, and T. W. Kim, Sci. Adv. Mater. 6, 2343
(2014).
4. CONCLUSIONS
A
family of new phenyl and phenylthienyl end-
functionalized with carbazole and/or ꢁ-carboline moiety
was synthesized and characterized. Thin-film transis-
tors fabricated from these molecules exhibited p-channel
device characteristics with relatively low electrical perfor-
mance, possibly due to poor film microstructure and grain
Delivered by Publishing Technol1o4g. y(at)oJ:. MJ.cPMarka,sWte. rJ.UHnyiuvne, rKs.itHy. Park, S. H. Im, and O. O. Park,
morphology. Further molecular engineering on phenyl and
IP: 179.106.152.75 On: Tue, 12 Jan 2016 10:03:25
Sci. Adv. Mater. 6, 2370 (2014); (b) J. K. Kim and S. K. Park, Sci.
Adv. Mater. 6, 2400 (2014); (c) H. Kim, D. S. Song, S. M. Kim,
phenylthienyl derivatives are in progreCsos.pyright: American Scientific Publishers
J. H. Jung, J. H. Kwon, D. K. Kim, G. Horowitz, M. Choi, I. M.
Kang, and J. H. Bae, Sci. Adv. Mater. 6, 2483 (2014); (c) W. M.
Yun, J. Jang, S. Nam, C. E. Park, S. H. Kim, and D. S. Chung, Sci.
Adv. Mater. 6, 1676 (2014).
Acknowledgments: This research was supported by
Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the
Ministry of Science, ICT and Future Planning (NRF-
2012R1A1A1007364), and was supported by the Human
Resources Development program (No. 20114010203090)
of the Korea Institute of Energy Technology Evaluation
and Planning (KETEP) grant funded by the Korea govern-
ment Ministry of Trade, Industry and Energy.
15. (a) M. A. Mohd Sarjidan, N. Jubri, S. H. Basri, N. K. Za’aba, M. S.
Zaini, S. N. Zaini, and W. H. Abd Majid, Nanosci. Nanotechnol. Lett.
6, 1035 (2014); (b) C.-W. Li, S.-P. Chang, and S.-J. Chang, Nanosci.
Nanotechnol. Lett. 6, 273 (2014); (c) H. Cui, T. D. Zeng, L. Shi,
S. Fang, G. Chen, X. Xu, and C. Xu, Nanosci. Nanotechnol. Lett.
5, 209 (2013); (d) Y. He, X. Li, and L. Que, J. Biomed. Nanotechnol.
10, 767 (2014).
16. (a) C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J. L. Breìdas,
P. C. Ewbank, and K. R. Mann, Chem. Mater. 16, 4436 (2004);
(b) A. Facchetti, L. Vaccaro, and A. Marrocchi, Angew. Chem. Int.
Ed. 51, 3520 (2012).
17. P. Strohriegl, D. Wagner, P. Schrögel, S. T. Hoffmann, A. Köhler,
U. Heinemeyer, and I. Munster, Proc. SPIE 8829, 882906 (2013).
18. K. Brunner, A. V. Dijken, H. Borrner, J. J. A. M. Bastiaansen, N. M.
M. Kiggen, and B. M. W. Langeveld, J. Am. Chem. Soc. 126, 6035
(2004).
19. Y. Im and J. Y. Lee, Chem. Commun. 49, 5948 (2013).
20. B. S. Kim and J. Y. Lee, Org. Eeletron. 14, 3024 (2013).
21. (a) Y. Wu, Y. Li, S. Gardner, and B. S. Ong, J. Am. Chem. Soc. 127,
614 (2005); (b) J. Han, B. Thirupathaiah, G. Kwon, C. Kim, and
S. Seo, Dyes Pigments 114, 78 (2015).
References and Notes
1. (a) M. Berggren, D. Nilsson, and N. D. Robinson, Nat. Mater. 6, 3
(2007); (b) T. Sekitani and T. Someya, Adv. Mater. 22, 2228 (2010).
2. (a) J. Baek, N. S. Kang, Y. D. Lee, B. H. Kang, K. Y. Dong, J. A.
Lim, Y. W. Song, J. M. Hong, and B. K. Ju, Sci. Adv. Mater. 5, 1775
(2013); (b) K. Fan, R. Li, J. Chen, W. Shi, and T. Peng, Sci. Adv.
Mater. 5, 1596 (2013); (c) R. Deng, L. Zhou, M. Song, Z. Hao,
and H. Zhang, Sci. Adv. Mater. 5, 1556 (2013); (d) V. Palanianthan,
N. Chauhan, A. C. Poulose, S. Raveendran, T. Mizuki, T. Hasumura,
T. Fukuda, H. Morimoto, Y. Yoshida, T. Maekawa, and D. S. Kumar,
Mater. Express 4, 415 (2014); (e) Y. A. K. Reddy, B. Ajitha, and
P. S. Reddy, Mater. Express 4, 32 (2014); (f) S. B. Choi, H. Zhao,
L. S. Pu, J. H. Cho, and J. Y. Lee, Sci. Adv. Mater. 6, 2338 (2014).
3. (a) H. Usta, C. Kim, Z. Wang, S. Lu, H. Huang, A. Facchetti, and
T. J. Marks, J. Mater. Chem. C 22, 4459 (2012); (b) A. C. Arias,
J. D. Mackenzi, I. McCulloch, J. Rivnay, and A. Salleo, Chem. Rev.
110, 3 (2010).
22. (a) W. Y. Hung, G. M. Tu, S. W. Chen, and Y. Chi, J. Mater. Chem.
22, 5410 (2012); (b) C. H. Chen, F. L. Wu, Y. Y. Tsai, and C. H.
Cheng, Adv. Funct. Mater. 21, 3150 (2011).
23. T. Thoms, S. Okada, J. P. Chen, and M. Furugori, Thin Solid Films
436, 264 (2003).
24. (a) H. Shimizu, A. Kobayashi, S. Itoi, T. Yoshihara, S. Tobita,
Y. Nakamura, and J. Nishimura, Heterocycles 78, 1265 (2009);
918
J. Nanosci. Nanotechnol. 16, 910–919, 2016