Organic & Biomolecular Chemistry
Paper
the interaction takes place preferentially in the hydrophobic 13 W. Y. He, Y. Li, J. Q. Liu, Z. D. Hu and X. G. Chen, Biopoly-
region of the protein. NMR experiments showed the preferred mers, 2005, 79, 48–57.
site of interaction of chalcone 3 with the protein. It is worth 14 K. Rurack, M. L. Dekhtyar, J. L. Bricks, U. Resch-Genger
noting, based on circular dichroism experiments, that the and W. Rettig, J. Phys. Chem. A, 1999, 103, 9626–9635.
stability of biological and chemical molecules is a fundamen- 15 M. K. Saroj, N. Sharma and R. C. Rastogi, J. Mol. Struct.,
tal feature aiming clinical and biotechnological applications. 2012, 1012, 73–86.
In this work, the results obtained from structural studies of 16 M. Danko, A. Andics, C. Kosa, P. Hrdlovic and D. Vegh,
the BSA–chalcone 3 binding process, based on thermal dena- Dyes Pigm., 2012, 92, 1257–1265.
turant effects, can be useful also to predict the stability of this 17 T. A. Fayed and M. K. Awad, Chem. Phys., 2004, 303, 317–
complex in the human blood vessel. Moreover, the results are 326.
in accordance with two possible binding sites. ESI-MS showed 18 T. Suwunwong, S. Chantrapromma and H. K. Fun, Chem.
the non-covalent nature of the host–guest interaction. 1H NMR
Pap., 2011, 65, 890–897.
and 13C T1 relaxation time experiments gave very interesting 19 S. C. Lee, N. Y. Kang, S. J. Park, S. W. Yun, Y. Chandran and
results and demonstrated which atoms of 3 were suffering a Y. T. Chang, Chem. Commun., 2012, 48, 6681–6683.
major influence of the protein through the host–guest inter- 20 B. A. D. Neto, A. A. M. Lapis, F. S. Mancilha,
actions. Theoretical calculations revealed the preference for
hydrophobic regions of the fluorescent probe and showed
I. B. Vasconcelos, C. Thum, L. A. Basso, D. S. Santos and
J. Dupont, Org. Lett., 2007, 9, 4001–4004.
the preferred sites of interaction in full accordance with the 21 B. A. D. Neto, A. A. M. Lapis, F. S. Mancilha, E. L. Batista,
experimental analyses. Additionally, it corroborates with
P. A. Netz, F. Rominger, L. A. Basso, D. S. Santos and
the efficiency of the ICT process to stabilize the dye in the
J. Dupont, Mol. BioSyst., 2010, 6, 967–975.
excited state. Molecular docking calculations were used to 22 B. A. D. Neto and A. A. M. Lapis, Molecules, 2009, 14, 1725–
identify the sites of interaction (two preferential sites) between 1746.
BSA and chalcone 3, showing a preference to interact with 23 B. A. D. Neto, P. H. P. R. Carvalho, D. C. B. D. Santos,
tryptophan residues Trp134 (site A) and Trp213 (site B).
Finally, all features of the designed dye indicate that this is
one of the most efficient probes ever described to be used as a
C. C. Gatto, L. M. Ramos, N. M. de Vasconcelos,
J. R. Corrêa, M. B. Costa, H. C. B. de Oliveira and
R. G. Silva, RSC Adv., 2012, 2, 1524–1532.
model in the host–guest interactions of chalcones and pro- 24 B. A. D. Neto, J. R. Correa, P. Carvalho, D. Santos,
teins. Moreover, it opens up a new avenue towards a rational
design for new fluorescent chalcone derivatives to be used in
this kind of study.
B. C. Guido, C. C. Gatto, H. C. B. de Oliveira, M. Fasciotti,
M. N. Eberlin and E. N. da Silva, J. Braz. Chem. Soc., 2012,
23, 770–781.
25 C. K. Z. Andrade and W. A. Silva, Lett. Org. Chem., 2006, 3,
39–41.
26 W. A. Silva, C. C. Gatta and G. R. Oliveira, Acta Crystallogr.
Sect. E: Struct Rep. Online, 2011, 67, O2210–U1525.
27 G. R. de Oliveira, H. C. B. de Oliveira, W. A. Silva,
V. H. C. da Silva, J. R. Sabino and F. T. Martins, Struct.
Chem., 2012, 23, 1667–1676.
Notes and references
1 A. A. Marti, S. Jockusch, N. Stevens, J. Y. Ju and N. J. Turro,
Acc. Chem. Res., 2007, 40, 402–409.
2 M. M. Kemp, M. Weiwer and A. N. Koehler, Bioorg. Med. 28 F. J. Zhang, X. Wu and J. H. Zhan, J. Fluoresc., 2011, 21,
Chem., 2012, 20, 1979–1989. 1857–1864.
3 S. Monti, I. Manet, F. Manoli, S. Ottani and G. Marconi, 29 Y. Imai, K. Komon, N. Tajima, T. Kinuta, T. Sato, R. Kuroda
Photochem. Photobiol. Sci., 2009, 8, 805–813. and Y. Matsubara, J. Lumin., 2010, 130, 954–958.
4 S. Monti, I. Manet, F. Manoli and G. Marconi, Phys. Chem. 30 K. Medjanik, D. Chercka, P. Nagel, M. Merz, S. Schuppler,
Chem. Phys., 2008, 10, 6597–6606.
5 T. Peters, Adv. Protein Chem., 1985, 37, 161–245.
6 Meetu and N. Raghav, Asian J. Chem., 2009, 21, 5475–5482.
M. Baumgarten, K. Mullen, S. A. Nepijko, H. J. Elmers,
G. Schonhense, H. O. Jeschke and R. Valenti, J. Am. Chem.
Soc., 2012, 134, 4694–4699.
7 S. Monti, F. Manoli, S. Sortino, R. Morrone and G. Nicolosi, 31 R. Baskar and K. Subramanian, Spectrochim. Acta, Part A,
Phys. Chem. Chem. Phys., 2005, 7, 4002–4008. 2011, 79, 1992–1997.
8 S. Monti, I. Manet, F. Manoli, R. Morrone, G. Nicolosi and 32 G. Ulrich, F. Nastasi, P. Retailleau, F. Puntoriero, R. Ziessel
S. Sortino, Photochem. Photobiol., 2006, 82, 13–19. and S. Campagna, Chem.–Eur. J., 2008, 14, 4381–4392.
9 S. Monti, I. Manet, F. Manoli and S. Sortino, Photochem. 33 P. Perjesi, K. Fodor and T. Koszegi, Eur. J. Pharm. Sci., 2007,
Photobiol. Sci., 2007, 6, 462–470. 32, S38–S39.
10 L. M. Ni, C. Q. Meng and J. A. Sikorski, Expert Opin. Ther. 34 C. Reichardt, Chem. Rev., 1994, 94, 2319–2358.
Pat., 2004, 14, 1669–1691.
35 P. Rajakumar, A. Thirunarayanan, S. Raja, S. Ganesan and
11 Z. Nowakowska, Eur. J. Med. Chem., 2007, 42, 125–137.
P. Maruthamuthu, Tetrahedron Lett., 2012, 53, 1139–1143.
12 N. K. Sahu, S. S. Balbhadra, J. Choudhary and D. V. Kohli, 36 S. H. Mashraqui, S. Sundaram and T. Khan, Chem. Lett.,
Curr. Med. Chem., 2012, 19, 209–225.
2006, 786–787.
This journal is © The Royal Society of Chemistry 2013
Org. Biomol. Chem.