Page 9 of 11
Journal of the American Chemical Society
1
2
3
4
5
6
7
8
9
1
2014, 53, 793–797. (e) Xia, X. D.; Xuan, J.; Wang, Q.; Lu, L. Q.; Chen, J. R.;
(a) Inoue, Y. "Asymmetric Photochemical Reactions in Solution",
Xiao, W. J. “Synthesis of 2-Substituted Indoles through Visible Light-In-
duced Photocatalytic Cyclizations of Styryl Azides”, Adv. Synth. Catal. 2014,
356, 2807–2812. (f) Scholz, S. O.; Farney, E. P.; Kim, S.; Bates, D. M.; Yoon,
T. P. “Spin-selective generation of triplet nitrenes: Olefin aziridination
through visible-light photosensitization of azidoformates”, Angew. Chem. Int.
Ed. 2016, 55, 2239–2242.
Chem. Rev. 1992, 92, 741–770. (b) Inoue, Y.; Ramamurthy, V. Molecular and
Supramolecular Photochemistry, Volume 11: Chiral Photochemistry, Marcel
Dekker, New York, NY, 2004. (c) Brimioulle, R.; Lenhart, D.; Maturi, M.
M.; Bach, T. "Enantioselective Catalysis of Photochemical Reactions", An-
gew. Chem. Int. Ed. 2015, 54, 3872–3890. (d) Sherbrook, E. M.; Yoon, T. P.
"Asymmetric Catalysis of Triplet-State Photoreactions". In Specialist Period-
ical Reports: Photochemistry; Albini, A., Protti, S., Eds.; Royal Society of
Chemistry: Croydon, 2019; Vol. 46, pp 432–448.
8 (a) Gong, L.; Chen, L.-A.; Meggers, E. “Asymmetric Catalysis Mediated
by the Ligand Sphere of Octahedral Chiral‐at‐Metal Complexes”, Angew.
Chem. Int. Ed. 2014, 53, 10868–10874. (b) Zhang, L.; Meggers, E. “Steering
Asymmetric Lewis Acid Catalysis Exclusively with Octahedral Metal-Cen-
tered Chirality”, Acc. Chem. Res. 2017, 50, 320–330.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
2 Eaton, P. E. “Photochemical Reactions of Simple Alicyclic Enones”, Acc.
Chem. Res. 1967, 1, 50–57.
3 (a) Maturi, M. M.; Bach, T. “Enantioselective Catalysis of the Intermo-
lecular [2+2] Photocycloaddition between 2-Pyridones and Acetylenedicar-
boxylates”, Angew. Chem., Int. Ed. 2014, 53, 7661−7664. (b) Tröster, A.;
Alonso, R.; Bauer, A.; Bach, T. “Enantioselective Intermolecular [2 + 2] Pho-
tocycloaddition Reactions of 2(1H)-Quinolones Induced by Visible Light
Irradiation”, J. Am. Chem. Soc. 2016, 138, 7808–7811. (c) Blum, T. R.; Mil-
ler, Z. D.; Bates, D. M.; Guzei, I. A.; Yoon, T. P. “Enantioselective Photo-
chemistry through Lewis Acid-Catalyzed Triplet Energy Transfer”, Science
2016, 354, 1391–1395. (d) Miller, Z. D.; Lee, B. J.; Yoon, T. P. “Enantiose-
lective Crossed Photocycloadditions of Styrenic Olefins by Lewis Acid Cat-
alyzed Triplet Sensitization”, Angew. Chem. Int. Ed. 2017, 56, 11891–11895.
(e) Huang, X.; Quinn, T. R.; Harms, K.; Webster, R. D.; Zhang, L.; Wiest,
O.; Meggers, E. “Direct Visible-Light-Excited Asymmetric Lewis Acid Catal-
ysis of Intermolecular [2+2] Photocycloadditions”, J. Am. Chem. Soc. 2017,
139, 9120–9123. (f) Huang, X.; Li, X.; Xie, X.; Harms, K.; Riedel, R.; Meg-
gers, E. “Catalytic asymmetric synthesis of a nitrogen heterocycle through
stereocontrolled direct photoreaction from electronically excited state”, Na-
ture Commun. 2017, 8, 2245. (g) Poplata, S.; Bach, T. “Enantioselective In-
termolecular [2+2] Photocycloaddition Reaction of Cyclic Enones and Its
Application in a Synthesis of (−)-Grandisol”, J. Am. Chem. Soc. 2018, 140,
3228–3231. (h) Hu, N.; Jung, H.; Zheng, Y.; Lee, J.; Zhang, L.; Ullah, Z.;
Xie, X.; Harms, K.; Baik, M.-H.; Meggers, E. "Catalytic Asymmetric
Dearomatization by Visible-Light-Activated [2+2] Photocycloaddition",
Angew. Chem. Int. Ed. 2018, 57, 6242–6246.
9
(a) Huo, H.; Shen, X.; Wang, C.; Zhang, L.; Rose, P.; Chen, L.-A.;
Harms, K.; Marsche, M.; Hilt, G.; Meggers, E. ”Asymmetric photoredox
transition-metal catalysis activated by visible light“, Nature 2014, 515, 100–
103. (b) Huo, H.; Wang, C.; Harms, K.; Meggers, E. "Enantioselective, Cat-
alytic Trichloromethylation through Visible-Light-Activated Photoredox
Catalysis with a Chiral Iridium Complex", J. Am. Chem. Soc. 2015, 137,
9551–9556. (c) Wang, C.; Zheng, Y.; Huo, H.; Röse, P.; Zhang, L.; Harms,
K.; Hilt, G.; Meggers, E. “Merger of Visible Light Induced Oxidation and
Enantioselective Alkylation with a Chiral Iridium Catalyst”, Chem. Eur. J.
2015, 21, 7355–7359. (d) C. Wang, J. Qin, X. Shen, R. Riedel, K. Harms, E.
Meggers, “Asymmetric Radical-Radical Cross-Coupling through Visible-
Light-Activated Iridium Catalysis”, Angew. Chem. Int. Ed. 2016, 55, 685–
688. (e) Ma, J. J.; Rosales, A. R.; Huang, X. Q.; Harms, K.; Riedel, R.; Wiest,
O.; Meggers, E. “Visible-Light-Activated Asymmetric β-C–H Functionali-
zation of Acceptor-Substituted Ketones with 1,2-Dicarbonyl Compounds”,
J. Am. Chem. Soc. 2017, 139, 17245–17248. (f) Huang, X.; Lin, J.; Shen, T.;
Harms, K.; Marchini, M.; Ceroni, P.; Meggers, E. "Asymmetric [3+2] Pho-
tocycloadditions of Cyclopropanes with Alkenes or Alkynes through Visible-
Light Excitation of Catalyst-Bound Substrates", Angew. Chem. Int. Ed. 2018,
57, 5454–5458.
10 Skubi, K. L.; Kidd, J. B.; Jung, H.; Guzei, I. A.; Baik, M. H.; Yoon, T. P.
“Enantioselective Excited-State Photoreactions Controlled by a Chiral Hy-
drogen-Bonding Iridium Sensitizer”, J. Am. Chem. Soc. 2017, 139, 17186–
17192.
4
(a) Müller, C.; Bauer, A.; Bach, T. “Light-driven enantioselective or-
11
ganocatalysis”, Angew. Chem. Int. Ed. 2009, 48, 6640–6642. (b) Alonso, R.;
Bach, T. “A chiral thioxanthone as an organocatalyst for enantioselective
[2+2] photocycloaddition reactions induced by visible light”, Angew. Chem.
Int. Ed. 2014, 53, 4368–4371. (c) Müller, C.; Bauer, A.; Maturi, M. M.; Con-
suelo Cuquerella, M.; Miranda, M. A.; Bach, T. “Enantioselective Intramo-
lecular [2 + 2]-Photocycloaddition Reactions of 4-Substituted Quinolones
Catalyzed by a Chiral Sensitizer with a Hydrogen-Bonding Motif,” J. Am.
Chem. Soc. 2011, 133, 16689–16697. (d) Holzl-Hobmeier, A.; Bauer, A.;
Viera Silva, A.; Huber, S. M.; Bannwarth, C.; Bach, T. Nature 2018, 564,
240–243.
CCDC-1897932 and CCDC-1897933 contain the supplementary
crystallographic data for 3f and 3w, respectively. These data can be obtained
free of charge from the Cambridge Crystallographic Data Centre.
12 See Supporting Information for details.
13 (a) Calhoun, G. C.; Schuster, G. B. "Radical cation and triplex Diels-
Alder reactions of 1,3-cyclohexadiene." J. Am. Chem. Soc. 1984, 106, 870–
871. (b) Kim, J. I.; Schuster. G. B. "Enantioselective catalysis of the triplex
Diels-Alder reaction: addition of trans-b-methylstyrene to 1,3-cyclohexadi-
ene photosensitized with (-)-1,1'-bis(2,4-dicyanonaphthalene)." J. Am.
Chem. Soc. 1990, 112, 9635–9637. (c) Kim, J. I.; Schuster, G. B. "Enantiose-
lective catalysis of the triplex Diels-Alder reaction: a study of scope and
mechanism." J. Am. Chem. Soc. 1992, 114, 9309–9317.
5 Vallavoju, N.; Selvakumar, S.; Jockusch, S.; Sibi, M. P.; Sivaguru, J. “En-
antioselective organo-photocatalysis mediated by atropisomeric thiourea
derivatives”, Angew. Chem. Int. Ed. 2014, 53, 5604–5608.
14 Von Sonntag, J.; Beckert, D.; Knolle, W.; Mehnert, R. “Electron trans-
fer as the initiation mechanism of photocurable maleimide–vinyl ether based
resins”, Radiat. Phys. Chem, 1999, 55, 609–613.
6 Cauble, D. F.; Lynch, V.; Krische, M. J. "Studies on the Enantioselective
Catalysis of Photochemically Promoted Transformations: ‘Sensitizing Re-
ceptors’ as Chiral Catalysts", J. Org. Chem. 2003, 68, 15–21.
15 (a) Levy, S. T.; Rubin, M. B.; Speiser, S. “Photophysics of Cyclic a-
Diketone-Aromatic Ring Bichromophoric Molecules. Structures, Spectra,
and Intramolecular Electronic Energy Transfer.” J. Am. Chem. Soc. 1992,
114, 10747–10756. (b) Levy, S.; Speiser, S. “Calculation of the Exchange
Integral for Short Range Intramolecular Electronic Energy Transfer in Bi-
chromophoric Molecules.” J. Chem. Phys. 1992, 96, 3585–3593.
7 (a) Lu, Z.; Yoon, T. P. “Visible light photocatalysis of [2+2] styrene cy-
cloadditions by energy transfer”, Angew. Chem. Int. Ed. 2012, 51, 10329–
10332. (b) Zou, Y. Q.; Duan, S. W.; Meng, X. G.; Hu, X. Q.; Gao, S.; Chen,
J. R.; Xiao, W. J. “Visible light induced intermolecular [2+2]-cycloaddition
reactions of 3-ylideneoxindoles through energy transfer pathway”, Tetrahe-
dron 2012, 68, 6914–6919. (c) Hurtley, A. E.; Lu, Z.; Yoon, T. P. “Cycload-
dition of 1,3-dienes by visible light photocatalysis”, Angew. Chem. Int. Ed.
2014, 53, 8991–8994. (d) Farney, E. P.; Yoon, T. P. “Visible-light sensitiza-
tion of vinyl azides by transition-metal photocatalysis”, Angew. Chem. Int. Ed.
16
The experimentally determined association constant at suggests that
99% of the Ir photocatalysts are bound to quinolone under initial reaction
concentrations at –78 °C.
9
ACS Paragon Plus Environment