J. Am. Chem. Soc. 2000, 122, 1927-1936
1927
A Novel Tandem Michael Addition/Meerwein-Ponndorf-Verley
Reduction: Asymmetric Reduction of Acyclic R,â-Unsaturated
Ketones Using A Chiral Mercapto Alcohol
Manabu Node,* Kiyoharu Nishide, Yukihiro Shigeta, Hiroaki Shiraki, and Kenichi Obata
Contribution from the Department of Pharmaceutical Manufacturing Chemistry,
Kyoto Pharmaceutical UniVersity, Misasagi, Yamashina, Kyoto 607-8414, Japan
ReceiVed October 4, 1999
Abstract: The introduction of a thiol group into a chiral alcohol reagent for asymmetric Meerwein-Ponndorf-
Verley (MPV) reductions allows asymmetric reduction of R,â-unsaturated ketones to secondary alcohols and
allylic alcohols via a novel tandem Michael addition/MPV reduction. The reaction of acyclic R,â-unsaturated
ketones 1 and an optically active 1,3-mercapto alcohol (-)-2 using dimethylaluminum chloride afforded the
MPV reduction products 3 diastereoselectively in very high yields (up to 96%). Mechanistic studies elucidated
(1) the structure of the chelation complex D with (-)-2 and Me2AlCl, (2) an asymmetric 1,7-hydride shift
(intramolecular MPV reduction), and (3) dynamic kinetic resolution via reversible Michael addition. Subsequent
reductive desulfurization of the MPV products 3 with a modified Raney nickel system led to the highly
enantioselective reduction of R,â-unsaturated ketones to saturated secondary alcohols in 96-98% ee.
â-Elimination of the corresponding sulfoxides gave the allylic alcohols in 86-98% ee. Applications to the
asymmetric reduction of a synthetic intermediate 1m of prostaglandins and to a new asymmetric synthesis of
the (+)-Rove beetle pheromone 11 are described.
Introduction
enantioselectivity was realized by this methodology.8 Con-
versely, it was shown that intramolecular MPV reduction (1,5-
hydride shift) proceeds with extremely high stereoselectivity,9
though this method is not applicable to asymmetric reduction
of the usual ketones without a chiral alcohol moiety. Evans and
co-workers devised a catalytic highly enantioselective MPV
reduction using a chiral samarium catalyst.10 Noyori and co-
workers also exploited an excellent asymmetric transfer hydro-
genation of aromatic ketones using a late transition metal chiral
ruthenium or iridium catalyst. The reaction is similar to the MPV
The Meerwein-Ponndorf-Verley (MPV) reduction, discov-
ered in the 1920s, still is a useful method for the reduction of
carbonyl compounds because of its chemoselectivity.1 Various
alkoxides of Li,2 Mg,3 and early transition metals (Sc,4 Y,4
lanthanide,5 Zr,6 Hf,6 Ta7), variants of the original aluminum
isopropoxide, have been used in this reaction. In the 1950s and
1960s, asymmetric versions of the intermolecular MPV reduc-
tion of ketones employing optically active alcohols as chiral
sources were widely studied. However, only low or moderate
* Address correspondence to this author.
(5) (a) Lanthanide alkoxide: Lebrun, A.; Namy, J. L.; Kagan, H. B.
Tetrahedron Lett. 1991, 32, 2355-2358. (b) Okano, T.; Matsuoka, M.;
Konishi, H.; Kiji, J. Chem. Lett. 1987, 181-184. (c) Namy, J. L.; Souppe,
J.; Collin, J.; Kagan, H. B. J. Org. Chem. 1984, 49, 2045-2049. (d)
Intramolecular Tishchenko reduction (SmI2): Evans, D. A.; Hoveyda, A.
H. J. Am. Chem. Soc. 1990, 112, 6447-6449.
(1) Review: (a) Wilds, A. L. Org. React. 1944, 2, 178-223. (b) de
Graauw, C. F.; Peters, J. A.; van Bekkum, H.; Huskens, J. Synthesis 1994,
1007-1017. (c) Takahashi, K.; Shibagaki, M.; Kuno, H.; Matsushita, H.
Shokubai 1995, 37, 23-27 and references therein. Also see: (d) Knauer,
B.; Krohn, K. Liebigs Ann. 1995, 677-683. (e) Krohn, K.; Knauer, B.
Liebigs Ann. 1995, 1347-1351. (f) Castellani, C. B.; Carugo, O.; Perotti,
A.; Sacchi, D.; Invernizzi, A. G.; Vidari, G. J. Mol. Catal. 1993, 85, 65-
74. (g) Strickler, J. R.; Bruck, M. A.; Wexler, P. A.; Wigley, D. E.
Organometallics 1990, 9, 266-273. (h) Ramig, K.; Kuzemko, M. A.;
Parrish, D.; Carpenter, B. K. Tetrahedron Lett. 1992, 33, 6279-6282. (i)
Kaspar, J.; Trovarelli, A.; Lenarda, M.; Graziani, M. Tetrahedron Lett. 1989,
30, 2705-2706. (j) Hutton, J. Synth. Commun. 1979, 9, 483-486. (k)
Kowalski, C.; Creary, X.; Rollin, A. J.; Burke, M. C. J. Org. Chem. 1978,
43, 2601-2608. (l) Takezawa, N.; Kobayashi, H. Chem. Lett. 1977, 123-
126. (m) Doering, W. von E.; Aschner, T. C. J. Am. Chem. Soc. 1953, 75,
393-397. (n) Ooi, T.; Miura, T.; Maruoka, K. Angew. Chem., Int. Ed. 1998,
37, 2347-2349.
(2) (a) Ketoepoxide (RCHO Li): Baramee, A.; Chaichit, N.; Intawee,
P.; Thebtaranonth, C.; Thebtaranonth, Y. J. Chem. Soc., Chem. Commun.
1991, 1016-1017. (b) i-Pr2OLi SET mechanism: Ashby, E. C.; Argy-
ropoulos, J. N. J. Org. Chem. 1986, 51, 3593-3597. (c) Ashby, E. C. Acc.
Chem. Res. 1988, 21, 414-421.
(3) (a) MgO: Kaspar, J.; Trovarelli, A.; Lenarda, M.; Graziani, M.
Tetrahedron Lett. 1989, 20, 2705-2706. (b) MgO mechanism: Takezawa,
N.; Kobayashi, H. Chem. Lett. 1977, 123-126. (c) Equilibrium: Doering,
W. von E.; Aschner, T. C. J. Am. Chem. Soc. 1953, 75, 393-397.
(4) Castellani, C. B.; Carugo, O.; Perotti, A.; Sacchi, D.; Invernizzi, A.
G.; Vidari, G. J. Mol. Catal. 1993, 85, 65-74.
(6) (a) Zirconium or Hafnium hydride i-PrOH: Nakano, T.; Umano, S.;
Kino, Y.; Ishii, Y.; Ogawa, M. J. Org. Chem. 1988, 53, 3752-3757. (b)
Cp2ZrH2: Ishii, Y.; Nakano, T.; Inada, A.; Kishigami, Y.; Sakurai, K.;
Ogawa, M. J. Org. Chem. 1986, 51, 240-242. (c) (i-PrO)4Zr (pyrimidone
3,4-reduction): Hfseggen, T.; Rise, F.; Undheim, K. J. Chem. Soc., Perkin
Trans. 1 1986, 849-850. (d) Zr(t-OBu)4-1-(4-dimethylaminophenyl)-
ethanol: Knauer, B.; Krohn, K. Liebigs Ann. 1995, 677-683.
(7) Tantalum(V): Strickler, J. R.; Bruck, M. A.; Wexler, P. A.; Wigley,
D. E. Organometallics 1990, 9, 266-273.
(8) Chiral Grignard reagent: (a) Streitweiser, A., Jr.; Wolfe, J. R.;
Schaeffer, W. D. Tetrahedron 1959, 6, 338-344. (b) Foley, W. M.; Welch,
F. J.; La Combe, E. M.; Mosher, H. S. J. Am. Chem. Soc. 1959, 81, 2779-
2784. (c) MacLeod, R.; Welch, F. J.; Mosher, H. S. J. Am. Chem. Soc.
1960, 82, 876-880. (d) Burrows, E. P.; Welch, F. J.; Mosher, H. S. J. Am.
Chem. Soc. 1960, 82, 880-885. (e) Birtwistle, J. S.; Lee, K.; Morrison, J.
D.; Sanderson, W. A.; Mosher, H. S. J. Org. Chem. 1964, 29, 37-40. Chiral
aluminum alkoxide: (f) Doering, W. von E.; Young, R. W. J. Am. Chem.
Soc. 1950, 72, 631. (g) Jackman, L. M.; Mills, J. A.; Shannon, J. S. J. Am.
Chem. Soc. 1950, 72, 4814-4815. (h) Newman, P.; Rutkin, P.; Mislow, K.
J. Am. Chem. Soc. 1958, 80, 465-473. (i) Nasipuri, D.; Sarker, G. J. Indian
Chem. Soc. 1967, 44, 165-166. (j) Nasipuri, D.; Sarker, G.; Ghosh C. K.
Tetrahedron Lett. 1967, 5189-5192. (k) Fles, D.; Majhofer, B.; Kovac,
M. Tetrahedron 1968, 24, 3053-3057.
10.1021/ja993546y CCC: $19.00 © 2000 American Chemical Society
Published on Web 02/23/2000