the exclusion of allene formation (eq 1),6 led us to try to
generate (MeO(Ph3SiO)C:) by the oxadiazoline route.
°C was only 6.5 × 10-6 s-1, too small to account for the
formation of 8 from oxadiazoline 6 via 7 (Table 1).
1
Table 1. Thermolysis Rate Constants Determined by H NMR
Spectroscopy
Treatment of acetoxyoxadiazoline 57 with triphenysilanol
and catalytic trifluoroacetic acid afforded 6 in ca. 33% yield
(Scheme 2). After chromatography on silica, 6 was heated
precursor
solvent
thermolysis rate constant (110 °C)
6
benzene
methanol
benzene
methanol
kobs ) 8.1 × 10-5 s-1
kobs ) 6.1 × 10-5 s-1
kobs ) 6.5 × 10-6 s-1
kobs ) 8.2 × 10-4 s-1
7
Scheme 2
Thermolysis of 6 in toluene did not afford bibenzyl, and
added TEMPO did not lead to any detectable products of
radical trapping.9,10 It is therefore likely that carbene 9
(Scheme 3) is responsible for the formation of both 7 and 8.
Scheme 3
in degassed benzene for 24 h at 110 °C, in a sealed tube.
Major products were acetone, methyl triphenylsilylformate
(7), and methyl triphenylsilyl ether (8), with 7:8 ) 1:3
(Scheme 2).
Isolation of 7 and heating it in benzene (150 °C, 24 h,
sealed tube) converted it cleanly to 8, as reported by Brook
and co-workers.8 The rate constant for this process at 110
Thermolysis of 6 in methanol-d4 afforded orthoformate 10,
the H NMR spectrum of which showed both the expected
2
OCD3 and the orthoformyl CD signals. However, the yield
was low (∼8%) and both ester 7 and ether 8 were coproducts.
The majority of the product was ether 8 (unlabeled). The
rate constant for conversion of 7 to 8 is much larger in
methanol than in benzene (Table 1), suggesting that this
process occurs through a polar transition state. Thermolysis
of 7 in CD3OD at 110 °C also afforded 10, again in low
yield, Scheme 3. Thus, it appears that rearrangement of the
carbene intermediate is fast relative to trapping with metha-
nol, which we assume occurs with a bimolecular rate constant
(ignoring an isotope effect) of ca. 1 × 105 M-1 s-1, the
measured rate constant for trapping dimethoxycarbene.11
The most straightforward interpretation of these results
involves thermal cycloreversion of 6, to generate nitrogen
gas and a carbonyl ylide12 that fragments rapidly to acetone
and 9. Carbene 9 rearranges by migration of the triphenylsilyl
group from oxygen to carbon by a Brook rearrangement.
Several cases of gas-phase migrations of an alkyl group from
oxygen to carbon in dialkoxycarbenes are known. From the
preferential migration of 2,2,2-trifluoroethyl relative to
methyl or ethyl,13 it appears that negative charge develops
in the migrating group. Those dialkoxycarbenes do not
rearrange appreciably in solution, however, suggesting that
triphenylsilyl is a superior migrating group. This discovery
has implications for the thermal generation of other carbenes
by rearrangements of silyl analogues. It may be possible to
design systems with other double bonds, such as CdN, that
will rearrange similarly (i.e., diaminocarbenes, R2NC(dNR)-
SiR3 f R2N(NRSiR3)C: and alkoxyaminocarbenes, ROC-
(dNR)SiR3 f RO(NRSiR3)C:, or R2NC(dO)SiR3 f R2N-
(OSiR3)C:).
(4) For a review of R-siloxycarbenes generated from acylsilanes, see:
Brook, A. G. In The Chemistry of Organic Silicon Compounds; Patai, S.,
Rappoport, Z., Eds.; John Wiley and Sons: New York, 1989; Chapter 15,
pp 984-988. Also see: (a) Brook, A. G.; Kucera, H. W.; Pearce, R. Can.
J. Chem. 1971, 49, 1618. (b) Duff, J. M.; Brook, A. G. Can J. Chem. 1973,
51, 2869. (c) Bourque, R. A.; Davis, P. D.; Dalton, J. C. J. Am. Chem. Soc.
1981, 103, 697.
(5) (a) Pole, D. L.; Sharma, P. K.; Warkentin, J. Can. J. Chem. 1996,
74, 1335. (b) Kirmse, W.; Guth, M.; Steenken, S. J. Am. Chem. Soc. 1996,
118, 10838. (c) Gonza´lez, R.; Wudl, F.; Pole, D. L.; Sharma, P. K.;
Warkentin, J. J. Org. Chem. 1996, 61, 5837. (d) Kirmse, W.; Konrad, W.;
Schnitzler, D. J. Org. Chem. 1994, 59, 3821. (e) Walsh, R.; Wolf, C.;
Untiedt, S.; de Meijere, A. J. Chem. Soc., Chem. Commun. 1992, 421. (f)
Walsh, R.; Untiedt, S.; de Meijere, A. Chem. Ber. 1994, 127, 237. (g)
Shimizu, H.; Gordon, M. S.; Organometallics 1994, 13, 186. (h) Barton,
T. J.; Lin, J.; Ijadi-Maghsoodi, S.; Power, M. D.; Zhang, X.; Ma, Z.;
Shimuzu, H.; Gordon, M. S. J. Am. Chem. Soc. 1995, 117, 11695. (i) Creary,
X.; Wang, Y.-X. J. Org. Chem. 1994, 59, 1604.
(6) Baird, M. S.; Dale, C. M.; Al Dulayymi, J. R. J. Chem. Soc., Perkin
Trans. 1 1993, 1373.
(7) Kassam, K.; Pole, D. L.; El-Saidi, M.; Warkentin, J. J. Am. Chem.
Soc. 1994, 116, 1161.
(8) (a) Brook, A. G. J. Am. Chem. Soc. 1955, 77, 4827. (b) Brook, A.
G.; Mauris, R. J. J. Am. Chem. Soc. 1957, 79, 971.
(9) It is well established that other metallo formates containing Sn, Se,
or Te can undergo thermal or photochemical M-C bond homolysis to give
acyl radical/metal radical pairs. Acyl radicals then can undergo either
decarboxylation or decarbonylation. See: Lucas, M. A.; Schiesser, C. H.
J. Org. Chem. 1996, 61, 5754 and references therein.
(10) Some dialkoxycarbenes fragment in solution to radical pairs. See:
(a) Venneri, P. C.; Warkentin, J. J. Am. Chem. Soc. 1998, 120, 11182. (b)
Merkley, N.; El-Saidi, M.; Warkentin, J. Can. J. Chem. 2000, 78, 356. (c)
Reid, D. L.; Herna´ndez-Trujillo, J.; Warkentin, J. J. Phys. Chem. A 2000,
104, 3398.
(11) (a) Du, X.-M.; Fan, H.; Goodman, J. L.; Kesselmayer, M. A.; Krogh-
Jespersen, K.; LaVilla, J. A.; Moss, R. A.; Shen, S.; Sheridan, R. S. J. Am.
Chem. Soc. 1990, 112, 1920. (b) Moss, R. A.; Wlostowski, M.; Shen, S.;
Krogh-Jespersen, K.; Matro, A. J. Am. Chem. Soc. 1988, 110, 4443.
(12) Couture, P.; El-Saidi, M.; Warkentin, J. Can. J. Chem. 1997, 75,
326.
(13) Suh, D.; Pole, D. L.; Warkentin, J.; Terlouw, J. K. Can. J. Chem.
1996, 74, 544.
2734
Org. Lett., Vol. 2, No. 18, 2000