T. Guo et al. / Bioorg. Med. Chem. Lett. 17 (2007) 3010–3013
3013
3. (a) Rishton, G. M.; Retz, D. M.; Tempest, P. A.; Novotny,
J.; Kahn, S.; Treanor, J. J. S.; Lile, J. D.; Citron, M. J.
Med. Chem. 2000, 43, 2297; (b) Smith, D.W.; Munoz, B.;
Srinivasan, K.; Bergstrom, C.P.; Chaturvedula, P.V.;
Deshpande, M.S.; Kevy, D.J.; Lau, W.Y.; Parker, M.F.;
Sloan, C.P.; Wallace, O.B.; Wang, H.H. PCT Int. Appl.
WO2000050391; (c) Churcher, I.; Beher, D.; Best, J. D.;
Castro, J. L.; Clarke, E. E.; Gentry, A.; Harrison, T.;
Hitzel, L.; Kay, E.; Kerrad, S.; Lewis, H. D.; Morentin-
Gutierrez, P.; Mortishire-Smith, R.; Oakley, P. J.; Reilly,
M.; Shaw, D. E.; Shearman, M. S.; Teall, M. R.; Williams,
S.; Wrigley, J. D. Bioorg. Med. Chem. Lett. 2007, 17, 280;
(d) Asberom, T.; Bara, T. A.; Clader, J. W.; Greenlee, W.
J.; Guzik, H. S.; Josien, H. B.; Li, W.; Parker, E. M.;
Pissarnitski, D. A.; Song, L.; Zhang, L.; Zhao, Z. Bioorg.
Med. Chem. Lett. 2007, 17, 205; (e) Pissarnitski, D. A.;
Asberom, T.; Bara, T. A.; Buevich, A. V.; Clader, J. W.;
Greenlee, W. J.; Guzik, H. S.; Josien, H. B.; Li, W.;
McEwan, M.; McKittrick, B. A.; Nechuta, T. L.; Parker, E.
M.; Sinning, L.; Smith, E. M.; Song, L.; Vaccaro, H. A.;
Voigt, J. H.; Zhang, L.; Zhang, Q.; Zhao, Z. Bioorg. Med.
Chem. Lett. 2007, 17, 57; (f) Asberom, T.; Zhao, Z.; Bara,
T. A.; Clader, J. W.; Hyde, L. A.; Josien, H. B.; Li, W.;
McPhail, A. T.; Nomeir, A. A.; Parker, E. M.; Rajagopa-
lan, M.; Song, L.; Wong, G. T.; Zhang, L.; Zhang, Q.;
Pissarnitski, D. A. Bioorg. Med. Chem. Lett. 2007, 17, 511.
4. Gilchrist, T. L.; Rahman, A. J. Chem. Soc. Perkin Trans. 1
1998, 7, 1203.
carbamates bearing piperazines and piperidines with
bulky side chains (6e–g) are more active than carbamates
bearing acyclic amines (6a–b) or piperazines and piperi-
dines with small side chains (6c–d). Compound 6e
showed the highest potency in this series with an IC50 va-
lue of 120 nM. It should be noted that compounds 6a–g
were prepared as pure (2R,5S)-enantiomers.5 The antip-
odes, (2S,5R)-enantiomers, were also prepared but all
gave IC50 > 10,000 nM (data not shown).5 As a result,
the strong preference for (2R,5S)-configuration in c-
secretase inhibition is clearly established. It should also
be noted that the pyrrolidine carbamates 6 are in general
ꢀ10-fold less potent than the corresponding piperidine
carbamates 5.3e For example, pyrrolidine analog 6g
(IC50 = 180 nM) is 11-fold less potent than piperidine
analog 5g3e (IC50 = 16 nM). Interestingly, using chiral
HPLC and Mosher’s method, the absolute stereochemis-
try required for c-secretase inhibition by the piperidine
carbamates 5 had been established to have the (2R,6S)-
configuration (see Ref. 3e), consistent with that for
pyrrolidine carbamates 6. Based on these results, the
absolute stereochemistry for the active enantiomers in
the tetrahydroquinoline carbamates could be inferred
as the (2R)-configuration. However, this hypothesis
needs further experimental confirmation.
5. The alcohol intermediate 15 was analyzed by chiral HPLC
using analytical Chiralcel OD column, 10% isopropanol in
hexane, 1 mL/min, 254 nm: tR = 9.9 min, >99% e.e. The
antipode, (2S,5R)-15, was also prepared (from (2S,5R)-
Boc-5-phenyl-pyrrolidine-2-carboxylic acid) and analyzed:
tR = 12.3 min, >99% e.e. Each pure enantiomer was inde-
pendently converted to the corresponding carbamates.
6. To measure c-secretase activity, compounds were diluted
serially in DMSO, followed by a 37.5-fold dilution in start
buffer (Hepes, pH 7.5, and 5 mM EDTA). 10 lL of
membranes (5.0 lg total protein) in 20 mM Hepes, pH
5.0, and 5 mM EDTA, prepared as described in Ref. 7, was
mixed with 30 lL of start buffer containing either com-
pound or 2.7% DMSO (2% final) in a black 96-well Corning
Costar HTRF-compatible plate and incubated for 2 h at
37 °C. The enzymatic reaction was quenched with the
addition of 40 lL of a mixture containing 100 mM Tris–
HCl, pH 7.5, 50 mM NaCl, 0.5% BSA, 2.0% Triton X-100,
17 nM biotin-W02 (Ab40-specific antibody), 85 nM allo-
phycocyanin-streptavidin (Wallac), and ꢀ2 nM Europilat-
ed-G2-10 (Ab40-specific antibody labeled using Europium
chelate from Wallac according to the manufacturers’
procedures). The mixture was incubated for two to 16 h
at room temperature to allow the signal to develop and the
plate was read on a Wallac Victor. Fluorescence was
recorded at 665 nm. The signal at 615 nm was also
monitored to check for fluorescence interference or other
artifacts. All IC50’s represent the mean values of two or
more determinations with the standard deviations no
greater than 50% from the mean.
In summary, novel cyclic amine sulfonamide carbamates
have been discovered as potent c-secretase inhibitors.
Tetrahydroquinoline sulfonamide carbamates with one
and three carbon chain linkers are more potent than
those with a two carbon chain linker. Pyrrolidine sulfon-
amide carbamates are in general less potent than the
corresponding piperidine sulfonamide carbamates. A
clear preference for the (2R,5S)-configuration was firmly
established for the pyrrolidine sulfonamide carbamate
c-secretase inhibitors.
Acknowledgment
The authors thank Dr. William J. Greenlee of Schering-
Plough Research Institute for helpful discussions, sup-
port, and encouragement.
References and notes
1. (a) Selkoe, D. J. Arch. Neurol. 2005, 62, 192; (b) Selkoe, D.
J. Ann. Intern. Med. 2004, 140, 627; (c) Spillantini, M. G.;
Murrell, J. R.; Goedert, M.; Farlow, M. R.; Klug, A.;
Ghetti, B. Proc. Natl. Acad. Sci. USA 1998, 95, 7737; (d)
Hardy, J.; Selkoe, D. J. Science 2002, 297, 353.
2. (a) Churcher, I.; Beher, D. Curr. Pharm. Des. 2005, 11,
3363; (b) Josien, H. Curr. Opin. Drug Discov. 2002, 5,
513.
7. Zhang, L.; Song, L.; Terracina, G.; Liu, Y.; Pramanik, B.;
Parker, E. Biochemistry 2001, 40, 5049.