Detection of Picric Acid in Aqueous Media
Ed. 2013, 52, 2881; (d) Guo, Y.; Feng, X.; Han, T.; Wang, S.; Lin, Z.;
Dong, Y.; Wang, B. J. Am. Chem. Soc. 2014, 136, 15485; (e) Ye, J.;
Zhao, L.; Bogale, R. F.; Gao, Y.; Wang, X.; Qian, X.; Guo, S.; Zhao,
J.; Ning, G. Chem.-Eur. J. 2015, 21, 2029; (f) Chen, M.-M.; Zhou,
X.; Li, H.-X.; Yang, X.-X.; Lang, J.-P. Cryst. Growth Des. 2015, 15,
2753; (g) Yang, J.; Wang, Z.; Hu, K.; Li, Y.; Feng, J.; Shi, J.; Gu, J.
ACS Appl. Mater. Interfaces 2015, 7, 11956; (h) Wang, B.; Lv, X.-L.;
Feng, D.; Xie, L.-H.; Zhang, J.; Li, M.; Xie, Y.; Li, J.-R.; Zhou, H.-C.
J. Am. Chem. Soc. 2016, 138, 6204; (i) Bogale, R. F.; Ye, J.; Sun, Y.;
Sun, T.; Zhang, S.; Rauf, A.; Hang, C.; Tian, P.; Ning, G. Dalton
Trans. 2016, 45, 11137.
rived conjugated ligand containing hydrophilic oligo-
ethyoxy side chain via Suzuki coupling reaction. The
+
+
ligand could coordinate with Zn2 and Cd2 ions to
construct linear metallo-supramolecular coordination
polylmers whose dispersibilities were significantly im-
proved in organic solvent and water through the intro-
duction of tetraethyleneglycol monomethyl ether side
chain. Due to the large Stokes shift caused by the con-
jugated structure of the ligand and the inductive effect
of the d10 transition metal ions, the polymers showed
yellow light emission in chloroform and water and ob-
vious blue-shift took place in polar solvents like DMF
and DMSO. This type of coordination polymers dis-
played good selectivity and high sensitivity in the detec-
tion of PA in aqueous media. These visual FCs could be
prepared into solution-coated test strips to achieve the
facile detection outdoors, exhibiting the practical appli-
cations for public safety and security in the future.
[10] (a) Gole, B.; Shanmugaraju, S.; Bar, A. K.; Mukherjee, P. S. Chem.
Commun. 2011, 47, 10046; (b) Zhang, Y.; Zhan, T.-G.; Zhou, T.-Y.;
Qi, Q.-Y.; Xu, X.-N.; Zhao, X. Chem. Commun. 2016, 52, 7588.
[11] (a) Kumar, M.; Reja, S. I.; Bhalla, V. Org. Lett. 2012, 14, 6084; (b)
He, X.; Zhang, P.; Lin, J.-B.; Huynh, H. V.; Muňoz, S. E. N.; Ling,
C.-C.; Baumgartner, T. Org. Lett. 2013, 15, 5322; (c) Xiong, J.-F.; Li,
J.-X.; Mo, G.-Z.; Huo, J.-P.; Liu, J.-Y.; Chen, X.-Y.; Wang, Z.-Y. J.
Org. Chem. 2014, 79, 11619; (d) Yan, X.; Wang, H.; Hauke, C. E.;
Cook, T. R.; Wang, M.; Lal Saha, M.; Zhou, Z.; Zhang, M.; Li, X.;
Huang, F.; Stang, P. J. J. Am. Chem. Soc. 2015, 137, 15276.
[12] (a) Zhang, K.; Zhou, H.; Mei, Q.; Wang, S.; Guan, G.; Liu, R.;
Zhang, J.; Zhang, Z. J. Am. Chem. Soc. 2011, 133, 8424; (b) Naddo,
T.; Che, Y. K.; Zhang, W.; Balakrishnan, K.; Yang, X. M.; Yen, M.;
Zhao, J.-C.; Moore, J. S.; Zang, L. J. Am. Chem. Soc. 2007, 129,
6978.
[13] (a) Dobrawa, R.; Lysetska, M.; Ballester, P.; Grune, M.; Würthner, F.
Macromolecules 2005, 38, 1315; (b) Beck, J. B.; Ineman, M.; Ro-
wan, S. J. Macromolecules 2005, 38, 5060; (c) Fustin, C. A.; Guillet,
P.; Schubert, U. S.; Gohy, J. F. Adv. Mater. 2007, 19, 1665; (d)
Kumpfer, J. R.; Rowan, S. J. J. Am. Chem. Soc. 2011, 133, 12866; (e)
Wang, F.; Zhang, J.; Ding, X.; Dong, S.; Liu, M.; Zheng, B.; Li, S.;
Wu, L.; Yu, Y.; Gibson, H. W.; Huang, F. Angew. Chem., Int. Ed.
2010, 49, 1090; (f) Chen, S.-G.; Yu, Y.; Zhao, X.; Ma, Y.; Jiang,
X.-K.; Li, Z.-T. J. Am. Chem. Soc. 2011, 133, 11124; (g) Yan, X.; Xu,
D.; Chi, X.; Chen, J.; Dong, S.; Ding, X.; Yu, Y.; Huang, F. Adv.
Mater. 2012, 24, 362; (h) Tian, Y.-K.; Shi, Y.-G.; Yang, Z.-S.; Wang,
F. Angew. Chem., Int. Ed. 2014, 53, 6090.
Acknowledgement
This work is supported by the National Natural Sci-
ence Foundation of China (Nos. 21371043 and
21302035), and the Fundamental Research Funds for
the Central Universities (No. 2014HGCH0009). Y.-Y.Z.
expresses the most sincere respect to Prof. Xi-Kui Jiang
(Shanghai Institute of Organic Chemistry) and Prof.
Zhan-Ting Li (Fudan University) for sustained encour-
agement and support for his research.
References
[1] Desvergne, J. P.; Czarnik, A. W. Chemosensors of Ion and Molecule
Recognition, Kluwer Academic Publishers, Boston, 1997.
[2] (a) Bhattacharjee, Y. Science 2008, 320, 1416; (b) Germain, M. E.;
Knapp, M. J. Chem. Soc. Rev. 2009, 38, 2543; (c) Hu, Z.; Deibert, B.
J.; Li, J. Chem. Soc. Rev. 2014, 43, 5815.
[14] (a) Dobrawa, R.; Würthner, F. Chem. Commun. 2002, 1878; (b) Yu,
S.-C.; Kwok, C.-C.; Chan, W.-K.; Che, C.-M. Adv. Mater. 2003, 15,
1643; (c) Chen, Y.-Y.; Tao, Y.-T.; Lin, H.-C. Macromolecules 2006,
39, 8559; (d) Popovic, Z.; Busby, M.; Huber, S.; Calzaferri, G.; De
Cola, L. Angew. Chem., Int. Ed. 2007, 46, 8898; (e) Stepanenko, V.;
Stocker, M.; Muller, P.; Buchner, M.; Würthner, F. J. Mater. Chem.
2009, 19, 6816; (f) Schlutter, F.; Wild, A.; Winter, A.; Hager, M. D.;
Baumgaertel, A.; Friebe, C.; Schubert, U. S. Macromolecules 2010,
43, 2759; (g) Kokado, K.; Chujo, Y. Dalton Trans. 2011, 40, 1919;
(h) Sato, T.; Higuchi, M. Chem. Commun. 2012, 48, 4947; (e) Sato,
T.; Pandey, R. K.; Higuchi, M. Dalton Trans. 2013, 42, 16036; (f)
Wu, Z.; Huang, X. Chin. J. Chem. 2016, 34, 703; (g) Liu, Z.; Lai, B.;
Wen, H.; Robbins, J.; Huang, N. Chin. J. Chem. 2016, 34, 1304.
[15] Sun, X.; Wang, Y.; Lei, Y. Chem. Soc. Rev. 2015, 44, 8019.
[16] Li, H.-Q.; Ding, Z.-Y.; Pan, Y.; Liu, C.-H.; Zhu, Y.-Y. Inorg. Chem.
Front. 2016, 3, 1363.
[17] (a) Han, F. S.; Higuchi, M.; Kurth, D. G. Adv. Mater. 2007, 19, 3928;
(b) Han, F. S.; Higuchi, M.; Kurth, D. G. J. Am. Chem. Soc. 2008,
130, 2073.
[18] Hinderberger, D.; Schmelz, O.; Rehahn, M.; Jeschke, G. Angew.
Chem., Int. Ed. 2004, 43, 4616.
[19] Liu, S.; Jin, Z.; Teo, Y. C.; Xia, Y. J. Am. Chem. Soc. 2014, 136,
17434.
[20] Wittmeyer, P.; Traser, S.; Sander, R.; Sondergeld, K. B.; Ungefug, A.;
Weiss, R.; Rehahn, M. Macromol. Chem. Phys. 2016, 217, 1473.
[21] Wu, D.; Shao, T.; Men, J.; Chen, X.; Gao, G. Dalton Trans. 2014, 43,
1753.
[3] Akhavan, J. Chemistry of Explosives, 2nd ed., Royal Society of
Chemistry, London, 2004.
[4] (a) Bingham, E.; Cohrssen, B.; Powell, C. H. Patty’s Toxicology,
John Wiley & Sons, New York, 2000, IIB, p. 980; (b) Perez, G. V.;
Perez, A. L. J. Chem. Educ. 2000, 77, 910.
[5] (a) Ashbrook, P. C.; Houts, T. A. ACS Div. Chem. Health Safety
2003, 10, 27; (b) Cameron, M. Picric Acid Hazards, American In-
dustrial Hygiene Association, Fairfax, VA, 1995.
[6] (a) Toal, S. J.; Trogler, W. C. J. Am. Chem. Soc. 2006, 16, 2871; (b)
Salinas, Y.; Martinez-Manez, R.; Marcos, M. D.; Sancenon, F.; Cos-
tero, A. M.; Parra, M.; Gil, S. Chem. Soc. Rev. 2012, 41, 1261.
[7] (a) Swager, T. M. Acc. Chem. Res. 1998, 31, 201; (b) Hong, Y.; Lam,
J. W. Y.; Tang, B. Z. Chem. Commun. 2009, 4332; (c) Thomas, S. W.;
Joly, G. D.; Swager, T. M. Chem. Rev. 2007, 107, 1339.
[8] (a) Yang, J.-S.; Swager, T. M. J. Am. Chem. Soc. 1998, 120, 5321; (b)
Sohn, H.; Sailor, M. J.; Magde, D.; Trogler, W. C. J. Am. Chem. Soc.
2003, 125, 3821; (c) Rose, A.; Zhu, Z.; Madigan, C. F.; Swager, T.
M.; Bulovic, V. Nature 2005, 434, 876; (d) Qu, Y.; Liu, Y.; Zhou, T.;
Shi, G.; Jin, L. Chin. J. Chem. 2009, 27, 2043.
[9] (a) Braga, D.; Curzi, M.; Johansson, A.; Polito, M.; Rubini, K.; Gre-
pioni, F. Angew. Chem., Int. Ed. 2006, 45, 142; (b) Lan, A.; Li, K.;
Wu, H.; Olson, D. H.; Emge, T. J.; Ki, W.; Hong, M.; Li, J. Angew.
Chem., Int. Ed. 2009, 48, 2334; (c) Nagarkar, S. S.; Joarder, B.;
Chaudhari, A. K.; Mukherjee, S.; Ghosh, S. K. Angew. Chem., Int.
Chin. J. Chem. 2017, 35, 447—456
© 2017 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
455