DOI: 10.1039/C3CC47830K
Page 3 of 3
ChemComm
50 aChemical
Physics,
Department
of
Chemistry,
Lund
shows that hydroxylation of tertiary C-H bonds mediated by 2Otf
University,Lund,P.O.Box-124,SE-22100, Sweden. Fax: +46-46-22 24119;
bQBIS Group, Department of Chemistry, University de Girona, Campus
Montilivi, 17071 Girona, Catalonia, Spain. Fax: +34 972 41 81 50; Tel:
is predominantly performed by OB as shown by the large extent
of oxygen atoms originating from water in the alcohol product
(up to 79%, cf. Table 1). Instead, hydroxylation of secondary C-H
bonds occurs with incorporation of ~ 40% of oxygen atoms from
water, suggesting comparable reactivity of both tautomers. In
sharp contrast, hydroxylations catalyzed by 3OTf exhibit a
relatively small extent (~ 10%) of water incorporation in
hydroxylation of secondary C-H bonds, and negligible (< 3%)
5
cDepartment of Chemistry,University of Jyväskylä, Jyväskylä, Finland.
† Electronic Supplementary Information (ESI) available: Ligand
synthesis, complex synthesis, proton NMR spectra, ESI-MS and IR
60 spectra of the complex, crystallographic data for complexes 1OTf and
1H2O, catalysis experiments and results, details of isotope labelling
experiments. CCDC no 960138 and 960139. For ESI and crystallographic
data in CIF format see DOI: 10.1039/b000000x/.
10 incorporation in the hydroxylation of tertiary C-H sites,
indicating that hydroxylation is almost exclusively performed by
OA.
§Analogous product yields and A/K selectivity values were obtained
65 when H2O (1000 equiv.) was not specifically added.
Therefore, the relative reactivity of the two tautomeric forms of
the [FeV(O)(OH)(LN4)]2+ (O) intermediate is finely tuned among
15 the series of catalysts (1OTf-3OTf), a fact that contrasts with the
small effects exerted when the electronic properties of the
pyridine in a series of catalysts is altered.8d Trends observed for
1OTf-3OTf may thus be rationalized on the basis of steric effects.
The benzylimidazole ring introduces steric bulk in the proximity
20 of position B at the iron center that is intermediate between that
set by pyridine and 6-Me-pyridine arms (Fig. 2). Accordingly,
when secondary C-H bonds are hydroxylated, 1OTf behaves as
2OTf, i.e. tautomers OA and OB are equally implicated in the C-H
oxidation reaction. Instead, oxidation of sterically more
25 demanding tertiary C-H bonds yield levels of water incorporation
that suggest predominant participation of OA as in the case of
3OTf, although unlike in the latter case, implication of OB remains
significant (~25%) because steric hindrance at position B induced
by the C- C-sp2 benzylimidazol moiety is smaller than the one
30 caused by a C-sp3 methyl substituent.
1
(a) T. Newhouse and P. S. Baran, Angew Chem. Int. Ed., 2011, 50,
3362–3374; (b) L. McMurray, F. O'Hara and M. J. Gaunt, Chem. Soc.
Rev., 2011, 40, 1885-1898; (c) M. Bordeaux, A. Galarneau and J.
Drone, Angew. Chem. Int. Ed., 2012, 51, 10712-10723.
70 2 (a) C. E. Tinberg and S. J. Lippard, Acc. Chem. Res., 2011, 44, 280-
288; (b) M. Costas, M. P. Mehn, M. P. Jensen and L. Que, Jr., Chem.
Rev., 2004, 104, 939-986; (c) M. M. Abu-Omar, A. Loaiza and N.
Hontzeas, Chem. Rev., 2005, 105, 2227-2252; (d) E. G. Kovaleva and
J. D. Lipscomb, Nat. Chem. Biol., 2008, 4, 186-193.
75 3 (a) J. T. Groves, Cytochrome P-450. Structure, Mechanism, and
Biochemistry, 3rd ed.; P. R. Ortiz de Montellano, Ed., Plenum Press:
New York, 2005, 1-43; (b) P. R. Ortiz de Montellano, Chem. Rev.,
2010, 110, 932-948.
4
(a) D. T. Gibson and R. E. Parales, Curr. Opin. Biotechnol., 2000, 11,
236-243; (b) A. Karlsson, J. V. Parales, R. E. Parales, D. T. Gibson,
H. Eklund and S. Ramaswamy, Science, 2003, 299, 1039-1042.
(a) J. T. Groves, G. A. McClusky, R. E. White and M. J. Coon,
Biochem. Biophys. Res. Comm., 1978, 81, 154-160; (b) S.
Chakrabarty, R. N. Austin, D. Deng, J. T. Groves and J. D.
Lipscomb, J. Am. Chem. Soc., 2007, 129, 3514-3515.
. . aloni , E. W. Barr, C. T. Walsh, J. M. Bollinger and C. Krebs,
Nat. Chem. Biol., 2007, 3, 113-116.
(a) L. Que and W. B. Tolman, Nature, 2008, 455, 333-340. (b) M. C.
White, Science, 2012, 335, 807-809; (c) E. B. Bauer, Curr. Org.
Chem., 2008, 12, 1341-1369.
(a) K. Chen and L. Que, Jr., J. Am. Chem. Soc., 2001, 123, 6327-
6337; (b) J. Yoon, S. A. Wilson, Y. K. Jang, M. S. Seo, K. Nehru, B.
Hedman, K. O. Hodgson, E. Bill, E. I. Solomon and W. Nam, Angew.
Chem. Int. Ed., 2009, 48, 1257-1260; (c) S. H. Lee, J. H. Han, H.
Kwak, S. J. Lee, E. Y. Lee, H. J. Kim, J. H. Lee, C. Bae, S. N. Lee,
Y. Kim and C. Kim, Chem. Eur. J., 2007, 13, 9393-9398; (d) I. Prat,
A. Company, V. Postils, X. Ribas, J. Lawrence Que, J. M. Luis and
M. Costas, Chem. Eur. J., 2013, 19, 6724-6738; (e) Y. Hitomi, K.
Arakawa, T. Funabiki and M. Kodera, Angew. Chem. Int. Ed., 2012,
51, 3448-3452.
80
85
90
95
5
6
7
8
Figure 2. Comparative analysis of the steric bulk in proximity to
site B.
In conclusion, the present work adds to the growing evidence that 100
35 the coordination environment at non heme sites opens reactivity
scenarios unattainable by hemes. Here we have shown that
systematic tuning of the steric properties of the two sites in the
cis-Fe(O)(X) unit translates into systematic differences in relative
reactivity of the two iron-oxo tautomers. We postulate that
40 analogous steric conditions may influence the relative reactivities
of putative tautomers in non-heme iron oxygenases.
9
DFT calculations indicate that isomeric peroxide PA is not implicated
in the chemistry. See ref. 8e.
10 (a) D. Quinonero, K. Morokuma, D. G. Musaev, R. Mas-Balleste and
L. Que, Jr., J. Am. Chem. Soc., 2005, 127, 6548-6549; (b) A. Bassan,
M. R. A. Blomberg, P. E. M. Siegbahn and L. Que, Jr., J. Am. Chem.
Soc., 2002, 124, 11056-11063.
11 (a) I. Prat, J. S. Mathieson, M. Guell, X. Rivas, J. M. Luis, L. Cronin
and M. Costas, Nat. Chem., 2011, 3, 788-793; (b) W. N. Oloo, A. J.
Fielding and L. Que, Jr., J. Am. Chem. Soc., 2013, 135, 6438-6441.
105
110 12 (a) D. Blakesley, S. C. Payne and K. S. Hagen, Inorg. Chem., 2000,
39, 197-198; (b) Y. Zang, J. Kim, Y. Dong, E. C. Wilkinson, E. H.
Appelman and L. Que, Jr., J. Am. Chem. Soc., 1997, 119, 4197-4205.
13 (a) J. England, C. R. Davies, M. Banaru, A. J. P. White and G. J. P.
Britovsek, Adv. Synth. Catal., 2008, 350, 883-897; (b) G. J. P.
This work has been supported by the European Union (the
Erasmus Mundus program), the International Research Training
45 Group Metals Sites in Biomolecules: Structures, Regulation and
thank Prof. Albert A. Shteinman for fruitful discussions and Dr.
Santanu Mandal for 13C-NMR measurements.
115
Britovsek, J. England and A. J. P. White, Inorg. Chem., 2005, 44,
8125-8134; (c) P. Comba, M. Maurer and P. Vadivelu, Inorg. Chem.,
2009, 48, 10389-10396; (d) Y. Mekmouche, S. Ménage, C. Toia-
Duboc, M. Fontecave, J.-B. Galey, C. Lebrun and J. Pecaut, Angew.
Chem. Int. Ed., 2001, 40, 949-952; (e) Y. He, J. D. Gorden and C. R.
Goldsmith, Inorg. Chem., 2011, 50, 12651-12660.
Notes and references
120
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3