A.N. Parvulescu et al. / Journal of Catalysis 255 (2008) 206–212
211
(R)-amine is available to the enzyme at any time, resulting in
good enantiodiscrimination even at high conversion levels. The
(R)-N-(1-phenylethyl)-2-methoxyacetamide was obtained at a
88% yield after just 50 min at 100 ◦C over 5% Pd/BaSO4, with a
good e.e. of 97% (Table 5). The slightly lower e.e.’s in some re-
actions may be caused by the uncatalyzed reaction of the amine
with the acylating agent. For the DKR of 1-(p-tolyl)ethylamine,
a slightly longer reaction time of 75 min was necessary. Using
classical heating, the conversion of this substrate was just 60%
after 75 min, whereas it attained 97% under microwave condi-
tions in this same period. The same trends are apparent in the
DKRs of 2-naphthylethylamine and 1-aminotetraline; for ex-
ample, for 2-naphthylethylamine, 84% conversion with a 77%
yield of the desired (R)-amide was obtained after 85 min under
microwave conditions.
(e) J. Paetzold, J.E. Bäckvall, J. Am. Chem. Soc. 127 (2005) 17620;
(f) S. Gastaldi, S. Escoubet, N. Vanthuyne, G. Gil, M.P. Bertrand, Org.
Lett. 5 (2007) 837;
(g) M. Stirling, J. Blacker, M.I. Page, Tetrahedron Lett. 48 (2007) 1247;
(h) A.J. Blacker, M.J. Stirling, M.I. Page, Org. Process Res. Dev. 11 (2007)
642;
(i) A.N. Parvulescu, P.A. Jacobs, D.E. De Vos, Adv. Synth. Catal. 350
(2008) 113.
[6] (a) A. Parvulescu, D. De Vos, P. Jacobs, Chem. Commun. 42 (2005) 5307;
(b) A.N. Parvulescu, P.A. Jacobs, D.E. De Vos, Chem. Eur. J. 13 (2007)
2034.
[7] (a) B.A. Persson, A.L.E. Larsson, M. Le Ray, J.E. Bäckvall, J. Am. Chem.
Soc. 121 (1999) 1645;
(b) O. Pamiès, J.E. Bäckvall, Chem. Rev. 10 (2003) 3247;
(c) N.J. Turner, Curr. Opin. Chem. Biol. 8 (2004) 114;
(d) J.H. Choi, Y.H. Kim, S.H. Nam, S.T. Shin, M.J. Kim, J. Park, Angew.
Chem. Int. Ed. 41 (2002) 2373;
(e) M.-J. Kim, Y. Ahn, J. Park, Curr. Opin. Biotechnol. 13 (2002) 578;
(f) S. Wuyts, D.E. De Vos, F. Verpoort, D. Depla, R. De Gryse, P.A. Jacobs,
J. Catal. 219 (2003) 417;
(g) S. Wuyts, K. De Temmerman, D.E. De Vos, P.A. Jacobs, Chem. Com-
mun. (2003) 1928;
(h) K. Yamaguchi, T. Koike, M. Kotani, M. Matsushita, S. Shinachi,
N. Mizuno, Chem. Eur. J. 11 (2005) 6574;
The stability of the catalytic system under microwave radi-
ation was proven by recovering the catalysts and reusing them
for two DKR cycles. No loss of activity or selectivity was ob-
served.
4. Conclusion
(i) D. Klomp, T. Maschmeyer, U. Hanefeld, J.A. Peters, Chem. Eur. J. 10
(2004) 2088;
(j) D. Klomp, K. Djanashvili, N.C. Svennum, N. Chantapariyavat, C.S.
Wong, F. Vilela, T. Maschmeyer, J.A. Peters, U. Hanefeld, Org. Biomol.
Chem. 3 (2005) 483;
(k) L. Veum, L.T. Kanerva, P.J. Halling, T. Mashmeyer, U. Hanefeld, Adv.
Synth. Catal. 347 (2005) 1015;
(l) N. Kim, S.B. Ko, M.S. Kwon, M.J. Kim, J. Park, Org. Lett. 7 (2005)
4523;
(m) A. Berkessel, M.L. Sebastian-Ibarz, T.N. Muller, Angew. Chem. Int.
Ed. 45 (2006) 6567;
(n) B.A.C. van As, J.M. van Buijtenen, T. Mes, A.R.A. Palmans, E.W.
Meijer, Chem. Eur. J. 13 (2007) 8325;
(o) S. Wuyts, J. Wahlen, P.A. Jacobs, D.E. De Vos, Green Chem. 9 (2007)
1104;
(p) D. Strubing, P. Krumlinde, J. Piera, J.-E. Bäckvall, Adv. Synth.
Catal. 349 (2007) 1577.
Microwave irradiation proved to be an efficient tool for the
racemization and DKR of chiral benzylic amines over Pd on al-
kaline earth metals and lipases. The nature of the heating seems
to have the greatest impact on the racemization step. Under
microwave irradiation, the racemization rate increased, as did
the selectivity. It is thought that microwave heating selectively
affects the temperature of the metal clusters, whereas protons
responsible for side reactions are not influenced. The enzymatic
kinetic resolution of chiral amines seems not to be influenced by
the source of heating; identical results were obtained under mi-
crowave or classical heating conditions when CALB was used.
The DKR of benzylic amines under microwave conditions gave
the desired (R)-amides in high yields (often >80%) and with
e.e.’s between 95% and 98% in 90 min or less, whereas longer
times were needed to achieve similar conversion levels under
conventional heating.
[8] (a) A. Loupy, Microwave in Organic Synthesis, vols. I, II, second ed.,
Wiley–VCH, New York, 2006;
(b) J.M. Collins, N.E. Leadbeater, Org. Biomol. Chem. 5 (2007) 1141;
(c) C.O. Kappe, Angew. Chem. Int. Ed. 43 (2004) 6250;
(d) A. de la Hoz, Á. Diaz-Ortiz, A. Moreno, Chem. Soc. Rev. 34 (2005)
164;
(e) D. Dallinger, C.O. Kappe, Chem. Rev. 107 (2007) 2563;
(f) E. van der Eycken, QSAR Comb. Sci. 23 (2004) 825;
(g) E. van der Eycken, C.O. Kappe, Microwave-Assisted Synthesis of Het-
erocycles, Topics in Heterocyclic Chemistry, vol. 1, Springer, New York,
2006;
Acknowledgments
This work was supported by the Bilaterial Flanders–Roma-
nia cooperation of the Flemish government.and the IAP, GOA,
CECAT, and VIRKAT programmes.
(h) C.O. Kappe, A. Stadler, Microwaves in Organic and Medicinal Chem-
istry, first ed., Wiley–VCH, New York, 2005.
References
[9] (a) B.M.L. Dioos, P.A. Jacobs, J. Catal. 235 (2005) 428;
(b) A.L. Braga, C.S. Silveira, M.W.G. de Bolster, H.S. Schrekker, L.A.
Wessjohann, P.H. Schneider, J. Mol. Catal. A Chem. 239 (2005) 235;
(c) B. Toukonütty, O. Roche, J.-P. Mikkola, E. Toukonütty, F. Klingstedt,
K. Eränen, T. Salmi, D.Yu. Murzin, Chem. Eng. J. 126 (2007) 103;
(d) N.-F.K. Kaiser, U. Bremberg, M. Larhed, A. Hallberg, J. Organomet.
Chem. 603 (2000) 2;
[1] M. Breuer, K. Dietrich, T. Habicher, B. Hauer, M. Keßeler, R. Stürmer,
T. Zelinski, Angew. Chem. Int. Ed. 43 (2004) 788.
[2] K. Faber, Biotransformations in Organic Chemistry, third ed., Springer,
New York, 1997.
[3] F. van Rantwijk, R.A. Sheldon, Tetrahedron 60 (2004) 501.
[4] M. Kitamura, M. Tokunaga, R. Noyori, Tetrahedron 49 (1993) 1853.
[5] (a) M.T. Reetz, K. Schimossek, Chimia 50 (1996) 668;
(b) Y.K. Choi, M.J. Kim, Y. Ahn, M.-J. Kim, Org. Lett. 3 (2001) 4099;
(c) M.-J. Kim, W.H. Kim, K. Han, Y.K. Choi, J. Park, Org. Lett. 9 (2007)
1157;
(e) N.-F.K. Kaiser, U. Bremberg, M. Larhed, C. Moberg, A. Hallberg,
Angew. Chem. Int. Ed. 39 (2000) 3596;
(f) B.M. Trost, N.G. Andersen, J. Am. Chem. Soc. 124 (2002) 14320;
(g) A. Steinreiber, A. Stadler, S.F. Mayer, K. Faber, C.O. Kappe, Tetrahe-
dron Lett. 42 (2001) 6283;
(d) O. Pamiès, A.H. Ell, J.S.M. Samec, N. Hermanns, J.E. Bäckvall, Tetra-
hedron Lett. 43 (2002) 4699;
(h) G. Sello, F. Orsini, S. Bernasconi, P.A. Gennaro, Tetrahedron: Asym-
metry 17 (2006) 372.