2860 J ournal of Medicinal Chemistry, 2001, Vol. 44, No. 17
Brief Articles
) 8.9 Hz, 1H), 7.95 (d, J ) 2.8 Hz, 1H), 7.60 (d, J ) 8.8 Hz,
1H), 7.37 (dd, J ) 9.0, 2.8 Hz, 1H), 7.25 (d, J ) 9.7 Hz, 1H),
7.21 (d, J ) 8.7 Hz, 2H), 7.08 (d, J ) 2.7 Hz, 1H), 6.93 (d, J )
8.7 Hz, 2H), 6.66 (dd, J ) 9.7, 2.8 Hz, 1H), 3.94 (s, 3H), 3.87
(s, 3H), 1.02 (s, 9H), 0.25 (s, 6H); MS (FD) m/e 511 (M+).
6.73 (m, 5H), 3.92 (t, J ) 5.9 Hz, 2H), 2.57 (t, J ) 5.9 Hz, 2H),
2.38 (m, 4H), 1.4-1.5 (m, 4H), 1.3-1.4 (m, 2H); IR (KBr) 3560,
3490 cm-1; MS (FD+) m/e 466 (M+); Anal. C30H30N2O3‚
0.5H2O: C, H, N.
Biologica l Assa ys. Methods utilized for the ER binding,
MCF-7 proliferation, OVX rat, and immature rat assays have
been recently described.13,14
(b) The product (6.8 g, 13.3 mmol) of part a, above, was
dissolved in 1:1 acetonitrile:CH2Cl2 (200 mL) and treated with
hydrogen fluoride-pyridine (80 mL) for 1 h. The mixture was
diluted with brine (500 mL) and extracted with THF (3 × 300
mL). The combined organic layers were neutralized with
saturated NaHCO3, and the resulting aqueous layer was
washed with THF (2 × 500 mL). All aqueous layers were then
combined and washed with THF (500 mL), the combined
organic layers were dried (Na2SO4) and concentrated, and the
solid residue was washed with acetone to provide 5.27 g (100%)
of the phenol as an off-white powder, mp 310 °C: 1H NMR
(300 MHz, DMSO-d6) δ 9.79 (bs, 1H), 8.52 (d, J ) 9.0 Hz, 1H),
8.42 (d, J ) 9.0 Hz, 1H), 7.72 (m, 2H), 7.47 (dd, J ) 8.7, 2.3
Hz, 1H), 7.31 (d, 2.1 Hz, 1H), 7.21 (d, J ) 9.6 Hz, 1H), 7.07 (d,
J ) 8.4 Hz, 2H), 6.82 (d, J ) 8.3 Hz, 2H), 6.68 (dd, J ) 9.3,
2.6 Hz, 1H), 3.87 (s, 3H), 3.79 (s, 3H); MS (FD) m/e 397 (M+).
(c) A mixture of the crude product obtained above (4.8 g,
12.1 mmol), triphenylphosphine (6.3 g, 24.2 mmol), and 1-(2-
hydroxyethyl)piperidine in THF (100 mL) was treated with
DEAD (4.2 g, 24.2 mmol), and the mixture was stirred at
ambient temperature for 72 h. After concentation in vacuo,
chromatography (1:1 hexane:ethyl acetate, 5-20% methanol,
0.1% NH4OH) and recrystallization from ethyl acetate provided
5.14 g (84%) of the title compound as a white solid, mp 176
°C: 1H NMR (300 MHz, CDCl3) δ 8.25 (d, J ) 9.1 Hz, 1H),
8.21 (d, J ) 8.8 Hz, 1H), 7.96 (d, J ) 2.8 Hz, 1H), 7.64 (d, J )
8.8 Hz, 1H), 7.40 (dd, J ) 9.0, 2.8 Hz, 1H), 7.31 (d, J ) 9.7 Hz,
1H), 7.26 (d, J ) 8.8 Hz, 2H), 7.10 (d, J ) 2.7 Hz, 1H), 6.99 (d,
J ) 8.9 Hz, 2H), 6.70 (dd, J ) 9.6, 2.7 Hz, 1H), 4.16 (t, J ) 6.0
Hz, 2H), 3.95 (s, 3H), 3.88 (s, 3H), 2.81 (t, J ) 6.0 hz, 2H),
2.53 (m, 4H), 1.5-1.7 (m, 4H), 1.4-1.5 (m, 2H); MS (FD) m/e
508 (M+); Anal. C32H32N2O4: C, H, N.
Su p p or tin g In for m a tion Ava ila ble: Detailed procedures
for the syntheses of compounds 4a , 4c, 10a , and 10c. This
material is available free of charge via the Internet at http://
pubs.acs.org.
Refer en ces
(1) For a recent reviews, see: Magarian, R. A.; Overacre, L. B.;
Singh, S.; Meyer, K. L. The medicinal chemistry of nonsteroidal
antiestrogens. Curr. Med. Chem. 1994, 1, 61-104.
(2) For a recent review, see: Grese, T. A.; Dodge, J . A. Selective
estrogen receptor modulators (SERMs). Curr. Pharm. Des. 1998,
4, 71-92.
(3) Grese, T. A.; Pennington, L. D.; Sluka, J . P.; Adrian, M. D.; Cole,
H. W.; Fuson, T. R.; Magee, D. E.; Phillips, D. L.; Rowley, E. R.;
Shetler, P. K.; Short, L. L.; Venugopalan, M.; Yang, N. N.; Sato,
M.; Glasebrook, A. L.; Bryant, H. U. Synthesis and pharmacology
of conformationally restricted raloxifene analogues: highly
potent selective estrogen receptor modulators. J . Med. Chem.
1998, 41, 1272-1283.
(4) Grese, T. A.; Sluka, J . P.; Bryant, H. U.; Cullinan, G, J .;
Glasebrook, A. L.; J ones, C. D.; Matsumoto, K.; Palkowitz, A.
D.; Sato, M.; Termine, J . D.; Winter, M. A.; Yang, N. N.; Dodge,
J . A. Molecular determinants of selectivity in estrogen receptor
modulators. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 14105-
14110.
(5) For a leading reference, see: J anin, Y. L.; Bisagni, E. A formal
new access to benzo[c]phenanthridine alkaloids, synthesis of
nitidine and O-methyl fagaronine analogues. Tetrahedron 1993,
49, 10305-10316.
(6) Perez, D.; Guitian, E.; Castedo, L. A new approach to the
synthesis of antitumor benzophenanthridine alkaloids. Formal
synthesis of nitidine. J . Org. Chem. 1992, 57, 5911-5917.
(7) (a) Ninomiya, I. Applications of enamide chemistry to the
synthesis of heterocyclic compounds. Heterocycles 1980, 14,
1567-1579. (b) Ninomiya, I.; Naito, T. Enamide photocyclization
and its application to the synthesis of heterocycles. Heterocycles
1981, 15, 1433-1462.
(8) Ninomiya, I.; Naito, T.; Ishii, H.; Ishida, T.; Ueda, M.; Harada,
K. Synthesis of dihydro-derivatives of the benzo[c]phenanthri-
dine alkaloids avicine and nitidine by enamide photocyclisation.
J . Chem. Soc., Perkin Trans. 1 1975, 762-764.
(9) Coyle, J . D. Photochemistry of carboxylic acid derivatives. Chem.
Rev. 1978, 78, 97-123.
2,8-Dim et h oxy-5-[4-[2-(1-p ip er id in yl)et h oxy]p h en yl]-
6H-ben zo[c]p h en a n th r id in e (10d ). A solution of 10b (3.82
g, 7.51 mmol) in THF (250 mL) was treated with lithium
aluminum hydride (1.43 g, 37.5 mmol) resulting in a moderate
exotherm. After the exotherm ceased, the mixture was warmed
to reflux overnight, cooled to room temperature, and quenched
cautiously with ethyl acetate (200 mL) followed by 1 N NaOH
(200 mL). The layers were separated, the aqueous layer was
extracted with ethyl acetate (2 × 200 mL), and the combined
organic layers were washed with brine (200 mL), dried (Na2-
SO4), and concentrated. The residue was recrystallized from
hexane:ethyl acetate to provide 3.24 g (87%) of the title
compound as an off-white solid, mp 136-137: 1H NMR (300
MHz, CDCl3) δ 7.91 (d, J ) 8.6 Hz, 1H), 7.74 (d, J ) 8.8 Hz,
2H), 7.61 (d, J ) 8.6 Hz, 1H), 7.12 (d, J ) 2.5 Hz, 1H), 6.95
(dd, J ) 9.2, 2.6, 1H), 6.91 (dd, J ) 8.5, 2.6 Hz, 1H), 6.6-6.8
(m, 5H), 4.75 (s, 2H), 3.95 (t, J ) 6.1 Hz, 2H), 3.90 (s, 3H),
3.79 (s, 3H), 2.68 (t, J ) 6.1 Hz, 2H), 2.44 (m, 4H), 1.5-1.7
(m, 4H), 1.4-1.5 (m, 2H); MS (FD) m/e 494 (M+); Anal.
(10) Glasebrook, A. L.; Phillips, D. L.; Sluka, J . P. Multiple binding
sites for the anti-estrogen raloxifene (LY156758). J . Bone Miner.
Res. 1993, 8 (Suppl 1), S268. Scholl, S. M.; Huff, K. K.; Lippman,
M. E. Antiestrogenic effects of LY117018 in MCF-7 cells.
Endocrinology 1983, 113, 611-617. Miller, M. A.; Katzenellen-
bogen, B. S. Characterization and quantitation of antiestrogen
binding sites in estrogen receptor-positive and -negative human
breast cancer cell lines. Cancer Res. 1983, 43, 3094-3100.
(11) Thompson, E. W.; Reich, R.; Shima, T. B.; Albini, A.; Graf, J .;
Martin, G. R.; Dickson, R. B.; Lippman, M. E. Differential growth
and invasiveness of MCF-7 breast cancer cells by antiestrogens.
Cancer Res. 1988, 48, 6764-6768.
C
32H34N2O3: C, H, N.
(12) Anstead, G. M.; Carlson, K. E.; Katzenellenbogen, J . A. The
estradiol pharmacophore: ligand structure-estrogen receptor
binding affinity relationships and a model for the receptor
binding site. Steroids 1997, 62, 268-303.
(13) Grese, T. A.; Cho, S.; Finley, D. R.; Godfrey, A. G.; J ones, C. D.;
Lugar, C. W.; Martin, M. J .; Matsumoto, K.; Pennington, L. D.;
Winter, M. A.; Adrian, M. D.; Cole, H. W.; Magee, D. E.; Phillips,
D. L.; Rowley, E. R.; Short, L. L.; Glasebrook, A. L.; Bryant, H.
U. Structure-activity relationships of selective estrogen receptor
modulators: modifications to the 2-arylbenzothiophene core of
raloxifene. J . Med. Chem. 1997, 40, 146-167.
(14) Palkowitz, A. D.; Glasebrook, A. L.; Thrasher, K. J .; Hauser, K.
L.; Short, L. L.; Phillips, D. L.; Muehl, B. S.; Sato, M.; Shetler,
P. K.; Cullinan, G. J .; Pell, T. R.; Bryant, H. U. Discovery and
synthesis of [6-hydroxy-3-[4-[2-(1-piperidinyl)ethoxy]phenoxy]-
2-(4-hydroxyphenyl)]benzo[b]thiophene: A novel, highly potent,
selective estrogen receptor modulator. J . Med. Chem. 1997, 10,
11407-1416.
2,8-Dih yd r oxy-5-[4-[2-(1-p ip er id in yl)et h oxy]p h en yl]-
6H-ben zo[c]p h en a n th r id in e (4d ). A solution of 10d (3.2 g,
6.4 mmol) in CH2Cl2 (150 mL) was treated with ethanethiol
(3.2 g, 3.6 mL, 51 mmol) and aluminum chloride (5.1 g, 38.2
mmol). After being stirred for 4 h at ambient temperature,
the mixture was quenched carefully with THF (150 mL) and
saturated NaHCO3 (150 mL). The layers were separated, the
aqueous layer was extracted with THF (150 mL), and the
combined organic layers were dried (Na2SO4) and concen-
trated. The residue was purified by chromatography (1:1
hexane:ethyl acetate, 10-20% methanol, 0.1% NH4OH) and
then recrystallized from methanol to provide 2.7 g (90%) of
the title compound as an off-white powder, mp 260-270 °C:
1H NMR (300 MHz, DMF-d7) δ 9.92 (br s, 1H), 9.74 (br s, 1H),
7.99 (d, J ) 8.8 Hz, 1H), 7.78 (d, J ) 8.5 Hz, 1H), 7.69 (d, J )
9.0 Hz, 1H), 7.63 (d, J ) 8.7 Hz, 1H), 7.23 (d, J ) 2.0 Hz, 1H),
6.98 (dd, J ) 9.0, 2.1 Hz, 1H), 6.84 (dd, J ) 8.4, 2.1 Hz, 1H),
J M0101601