(CHCl3 + MeOH) = 305, 401.4, 523 and 554.2. ν˜max/cmϪ1
(CHCl3) = 1931 [CO, Ru(CO)]. H NMR (250 MHz, CDCl3 +
and the progress of the reaction was monitored by TLC
1
(chloroform). The product was washed with water (3 × 300
cm3),§ the solvent was evaporated and the product purified by
preparative TLC on silica with chloroform as eluent. The major
fraction corresponded to the expected ruthenium trimer isomer
(10.6 mg, 32%). λmax/nm (CHCl3) = 334.7, 401.7, 525.3 and
C5H5N) (mixture of conformers): δ 1.18–1.24 (m, 2 H, Hα of py
bound to Ru), 2.40 (3 s, 12 H, CH3 of pyrrole), 3.14 (m, 8 H,
CH2CH2CO2Me), 3.60 (3 s, 12 H, CO2CH3), 4.19 (br s, 8 H,
CH2CH2CO2Me), 5.07–5.17 (m, 2 H, Hβ of py), 6.01 (m, 1 H,
Hγ of py), 7.45 (t, 2 H, aryl, J = 8), 7.96 (d, 2 H, aryl, J = 8), 8.02
(d, 2 H, aryl, J = 8 Hz), 8.36 + 8.45 (2 s, 2 H, aryl), 9.80 (s, 2 H,
meso). Positive-ion FAB mass spectrum: m/z 1243 (M+) and
1215 (M Ϫ CO) (C53H50I2N4O9Ru requires 1242.1).
1
554.6. ν max/cmϪ1 (CHCl3) = 1944 [CO, Ru(CO)]. H NMR (250
MHz, CDCl3) (one isomer): δ 1.41 (d, 6 H, J = 6, Hα of
template), 2.39 (s, 36 H, CH3 of pyrrole), 2.99 (m, 24 H,
CH2CH2CO2Me), 3.39 (s, 36 H, CO2CH3), 4.02 (m, 24 H,
CH2CH2CO2Me), 5.57 (d, 6 H, J = 6, Hβ of template), 7.30 (d,
6 H, J = 8, aryl), 7.53 (t, 6 H, J = 8, aryl), 7.85 (d, 6 H, J = 8 Hz,
aryl), 9.03 (s, 6 H, CH of phenyl) and 9.38 (s, 6 H, meso).
Positive-ion FAB mass spectrum: m/z 3421 (M+) and 3336.8
(M Ϫ 3 CO) (C189H162N18O27Ru3 requires 3420.9).
Carbonyl(methanol){2,8,12,18-tetra(2-methoxycarbonyl-
ethyl)-3,7,13,17-tetramethyl-5,15-bis[3-(trimethylsilylethynyl)-
phenyl]porphyrinato}ruthenium 2. Complex
1
(450 mg,
3.5 × 10Ϫ4 mol) was dissolved in freshly distilled tetrahydro-
furan (25 cm3); triethylamine (25 cm3, freshly distilled), hexa-
kis(acetato)tripalladium() (12 mg, Johnson Matthey) and
triphenylphosphine (25 mg) were added and the mixture was
carefully degassed and saturated with argon. Trimethylsilyl-
acetylene (3 cm3) was added via a syringe and the reaction
mixture was heated overnight at 80 ЊC under an argon atmos-
phere. After evaporation of the solvent, the product was dis-
solved in the minimum of chloroform–methanol (20:1) and
chromatographed on silica gel with chloroform elution. The
product was recrystallised from chloroform–methanol to yield
Acknowledgements
We thank Dr. Harry Anderson for preliminary results and
stimulating discussions, Dr. Nick Bampos for advice and NMR
spectra, the European Community Human Captial and Mobil-
ity Programme (A. V. F. and V. M.), Cambridge Common-
wealth Trust, Ethyl Corporation and the New Zealand Vice
Chancellor’s Committee (S. J. W.) for their generous financial
support, and the EPSRC Mass Spectrometry Service for FAB
mass spectra.
the red-orange complex
2
(335 mg, 78%). λmax/nm
(CHCl3) = 310 (br), 401.3, 522.8 and 553.9. ν max/cmϪ1
᎐
§ The trimer solution should not be dried with potassium or sodium
carbonate as it appears to form an uncharacterised adduct from which
it could not be reisolated.
(CHCl ) = 1931 [CO, Ru(CO)], 2153 (C᎐CSi) and 846 (Si᎐Me).
᎐
3
1H NMR (250 MHz, CDCl3 + C5H5N): δ 0.25, 0.27 (2 s, 18 H,
SiMe3), 1.22 (m, 2 H, Hα of py bound to Ru), 2.36–2.40 (3 s, 12
H, CH3 of pyrrole), 3.11 (m, 8 H, CH2CO2Me), 3.59 (2 s, 12 H,
CO2CH3), 4.18 (br s, 8 H, CH2CH2CO2Me), 5.13 (m, 2 H, Hβ
of py), 6.0 (m, 1 H, Hγ of py), 7.69 (m, 2 H, aryl), 7.88 (m, 2 H,
aryl), 8.0–8.2 (m, 4 H, aryl) and 9.80 (br s, 2 H, meso). Positive-
ion FAB mass spectrum: m/z 1182.5 (M+) and 1154 (M Ϫ CO)
(C63H68N4O9RuSi2 requires 1182.4).
References
1 J. K. M. Sanders, Comprehensive Supramolecular Chemistry, eds.
J. L. Atwood, J. E. D. Davies, D. D. Macnicol and F. Vögtle,
Elsevier, Amsterdam, 1996, vol. 9, pp. 131–164.
2 H. L. Anderson and J. K. M. Sanders, J. Chem. Soc., Perkin Trans.
1, 1995, 2223; S. Anderson, H. L. Anderson and J. K. M. Sanders,
J. Chem. Soc., Perkin Trans. 1, 1995, 2247.
3 H. L. Anderson, S. Anderson and J. K. M. Sanders, J. Chem. Soc.,
Perkin Trans. 1, 1995, 2231.
4 C. J. Walter and J. K. M. Sanders, Angew. Chem., 1995, 107, 223;
Angew. Chem., Int. Ed. Engl., 1995, 34, 217.
5 L. G. Mackay, R. S. Wylie and J. K. M. Sanders, J. Am. Chem. Soc.,
1994, 116, 3141.
6 A. Vidal-Ferran, C. M. Müller and J. K. M. Sanders, J. Chem. Soc.,
Chem. Commun., 1994, 2657.
7 L. G. Mackay, H. L. Anderson and J. K. M. Sanders, J. Chem. Soc.,
Perkin Trans. 1, 1995, 2269; H. L. Anderson, C. J. Walter, A. Vidal-
Ferran, R. A. Hay, P. A. Lowden and J. K. M. Sanders, J. Chem.
Soc., Perkin Trans. 1, 1995, 2275.
8 S. S. Eaton and G. R. Eaton, Inorg. Chem., 1977, 16, 72.
9 H. L. Anderson, C. A. Hunter, M. N. Meah and J. K. M. Sanders,
J. Am. Chem. Soc., 1990, 112, 5780.
10 H. Ogoshi, H. Sugimoto and Z. Yoshida, Bull. Chem. Soc. Jpn.,
1978, 51, 2369; T. Boschi, G. Bontempelli and G.-A. Mazzocchin,
Inorg. Chim. Acta, 1979, 37, 155; P. Le Maux, H. Bahri and
G. Simonneaux, J. Chem. Soc., Chem. Commun., 1991, 1350.
11 J. T. Groves and R. Quinn, J. Am. Chem. Soc., 1985, 107, 5790.
12 S. J. Webb and J. K. M. Sanders, unpublished work.
13 D. Seyferth, M. O. Nestle and A. T. Wehmen, J. Am. Chem. Soc.,
1975, 97, 7417.
14 S. L. Schreiber, T. Sammakia and W. E. Crowe, J. Am. Chem. Soc.,
1986, 108, 3128.
15 M. J. Gunter and L. N. Mander, J. Org. Chem., 1981, 46, 4792.
16 D. P. Rillema, J. K. Nagle, L. F. Barringer and T. J. Meyer, J. Am.
Chem. Soc., 1981, 103, 56.
17 V. Marvaud and J. K. M. Sanders, unpublished work.
18 S. Anderson, H. L. Anderson and J. K. M. Sanders, J. Chem. Soc.,
Perkin Trans. 1, 1995, 2255.
19 D. W. J. McCallien and J. K. M. Sanders, J. Am. Chem. Soc., 1995,
117, 6611.
20 R. G. Little and J. A. Ibers, J. Am. Chem. Soc., 1973, 95, 8583.
21 A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard and
W. M. Skiff, J. Am. Chem. Soc., 1992, 114, 10024.
22 W. A. Goddard and A. K. Rappé, J. Phys. Chem., 1991, 95,
3358.
Carbonyl[5,15-bis(3-ethynylphenyl)-2,8,12,18-tetra(2-
methoxycarbonylethyl)-3,7,13,17-tetramethylporphyrinato]-
(methanol)ruthenium 3. The protected monomer 2 (256 mg,
2.1 × 10Ϫ4 mol) was dissolved in chloroform (50 cm3) contain-
ing tetrahydrofuran (0.5 cm3, freshly distilled) and the mixture
heated to reflux under dry air. Tetrabutylammonium fluoride
(1 cm3, of a 1.1 mol dmϪ3 solution in tetrahydrofuran) was
added and the reaction mixture was stirred for 10 min. Two
spatulas full of CaCl2 were added to the cooled mixture to
remove the excess of fluoride and the product was washed with
water (3 × 300 cm3). The solvent was evaporated, the product
dissolved in the minimum of chloroform–methanol (20:1)
and chromatographed on silica gel with chloroform elution.
It was recrystallised from a CHCl3–MeOH mixture to yield a
red-orange product (175 mg, 78%). λmax/nm (CHCl3) = 311
(br), 401.6, 523.7 and 554.4. ν max/cmϪ1 (CHCl3) = 1935.7
1
[CO, Ru(CO)]. H NMR (250 MHz, CDCl3 + C5H5N): δ 1.23
(m, 2 H, Hα of py bound to Ru), 2.39 (2 s, 12 H, CH3 of
pyrrole), 3.13 (m, 8 H, CH2CH2CO2Me), 3.59 (s, 12 H,
CO2CH3), 4.19 (br s, 8 H, CH2CH2CO2Me), 5.13 (m, 2 H, Hβ of
py), 6.0 (m, 1 H, Hγ of py), 7.70 (m, 2 H, aryl), 7.94 (m, 2 H,
aryl), 8.09 (m, 2 H, aryl), 8.13 (s, 2 H, aryl), 8.23 (s, 2 H, aryl)
and 9.81 (s, 2 H, meso). Positive-ion FAB mass spectrum: m/z
1039.4 (M+) and 1011.3 (M Ϫ CO) (C57H52N4O9Ru requires
1038.3).
Trimer 4. Deprotected porphyrin monomer 3 (30 mg,
2.8 × 10Ϫ5 mol) and tri(4-pyridyl)triazine (3 mg, 9.9 × 10Ϫ6 mol,
0.35 equivalent) were dissolved in dichloromethane (200 cm3,
freshly distilled over CaH2). After 5 min, when a bright clear
solution was obtained, CuCl (0.207 g) was added followed
by N,N,NЈ,NЈ-tetramethylethane-1,2-diamine (0.3 cm3). The
mixture was stirred under dry air for 2 h at room temperature,
J. Chem. Soc., Dalton Trans., 1997, Pages 985–990
989