J. Am. Chem. Soc. 1997, 119, 3631-3632
3631
[2 + 2 + 1] Alkyne Cyclotrimerizations: A
Metallacyclopentadiene Route to Fulvenes
Joseph M. O’Connor,* Kristin Hiibner, Rich Merwin,
Peter K. Gantzel, and Bella S. Fong
Department of Chemistry (0358), 9500 Gilman DriVe
UniVersity of California, San Diego
La Jolla, California 92093-0358
Melanie Adams and Arnold L. Rheingold*
Department of Chemistry, UniVersity of Delaware
Newark, Delaware 19716
ReceiVed January 2, 1997
Metal-mediated [2 + 2 + 2] cyclotrimerization of alkynes
to produce aromatic six-membered rings is now established as
an important route toward natural products and novel organic
materials.1 In sharp contrast, reports of [2 + 2 + 1] cyclotri-
merization of alkynes to produce the thermodynamically less
stable fulvene products are exceedingly rare (Scheme 1).2,3 In
principle, metallacyclopentadiene complexes may serve as
intermediates for both types of cycloaddition reactions. Direct
carbocycle formation from an η2-alkyne-metallacyclopentadiene
intermediate gives benzene product whereas an η2-alkyne to
vinylidene isomerization followed by carbocycle formation
would lead to fulvene product.
Figure 1. ORTEP drawing of 5 showing selected atom labeling.
Scheme 1
Previously, we reported a number of reactions involving
iridiacyclopentadienes and terminal alkynes (e.g., 1 to 2, Scheme
2) that appear to proceed through vinylidene intermediates (3).4
In no case was coupling observed between the vinylidene ligand
and the butadiendiyl ligand. Intrigued by the possibility that a
facial arrangement of the vinylidene and butadiendiyl ligands
would prove to be a more favorable geometry for fulvene
formation, we set out to prepare a metallacycle complex of the
1,1,1-tris(diphenylphosphinomethyl)ethane (triphos) ligand and
undertake reactivity studies with respect to terminal alkyne
substrates. Ηerein we report the first examples of the desired
metallacyclopentadiene to fulvene transformation.
Scheme 2
are heated at reflux for 24 h in toluene (20 mL), the triphos
When (PPh3)2Ir[CRdCRCRdCR]Cl (R ) CO2CH3)5 (0.96
complex (CH3C(CH2PPh2)3)Ir(CRdCRCRdCR)Cl (4, R )
CO2CH3) precipitates as a white solid in 95% yield (Scheme
3). Addition of phenylacetylene (0.88 mmol) to a methylene
chloride solution of 4 (200 mg, 0.18 mmol, 4.5 mM) and AgBF4
(0.19 mmol) at room temperature (16 h) led to isolation of an
orange-red solid (6)6 which was dissolved in wet chloroform
and stirred for 1 h to give fulvene complex 5 in 80% isolated
yield.7
mmol) and 1,1,1-tris(diphenylphosphinomethyl)ethane (1.2 mmol)
(1) For leading references to late metal alkyne cyclotrimerization see:
(a) Cruciani, P.; Aubert, C.; Malacria, M. Synlett 1996, 105. (b) Bose, R.;
Matzger, A. J.; Mohler, D. L.; Vollhardt, K. P. C. Angew. Chem., Int. Ed.
Engl. 1995, 34, 1478. (c) Saa, C.; Crotts, D. D.; Hsu, G.; Vollhardt, K. P.
C. Synlett 1994, 487. (d) Bianchini, C.; Caulton, K. G.; Chardon, C.;
Doublet, M.-L.; Eisenstein, O.; Jackson, S. A.; Johnson, T. J.; Meli, A.;
Peruzzini, M.; Streib, W. E.; Vacca, A.; Vizza, F. Organometallics 1994,
13, 2010. (e) Sato, Y.; Nishimata, T.; Mori, M. J. Org. Chem. 1994, 59,
6133. (f) Vollhardt, K. P. C. Pure Appl. Chem. 1993, 65, 153. (g) Nambu,
M.; Mohler, D. L.; Hardcastle, K.; Baldridge, K. K.; Siegel, J. S. J. Am.
Chem. Soc. 1993, 115, 6138. (h) Vollhardt, K. P. C. Angew. Chem., Int.
Ed. Engl. 1984, 23, 539.
(2) (a) Moran, G.; Green, M.; Orpen, A. G. J. Organomet. Chem. 1983,
250, C15. (b) Moreto, J.; Maruya, K.; Bailey, P. M.; Maitlis, P. M. J. Chem.
Soc., Dalton Trans. 1982, 1341. (c) It is interesting to note that the
mechanisms suggested for alkyne cyclization in refs 2a and 2b do not involve
metallacyclopentadiene intermediates. (d) See also: Liebeskind, L. S.;
Chidambaram, R. J. Am. Chem. Soc. 1987, 109, 5025.
1
In the H NMR spectrum (CDCl3) of 5 a vinyl hydrogen
resonance was observed as an apparent triplet at δ 6.28 (3JPH
) 7.0 Hz). A 13C-1H heteronuclear correlation 2D NMR
experiment (HMQC)8 established that the hydrogen giving rise
to the δ 6.28 resonance in the 1H NMR spectrum is attached to
a carbon which resonates at 45.8 ppm (2JPC ) 51.2 Hz, 1JCH
)
148 Hz) in the 13C NMR spectrum.9 The downfield chemical
shift of the benzylic hydrogen (δ 6.28) and the 148 Hz carbon-
hydrogen coupling constant argue against an agostic interac-
(3) Cyclotrimerization of 3,3-dimethylbut-1-yne to a fulvene product has
been observed with an early metal catalyst: Prof. I. P. Rothwell, personal
communication.
(6) In a 1H NMR tube scale reaction (CDCl3), 4 and phenylacetylene
gave rise to a new complex (6) that exibits four carboxymethyl singlets at
δ 4.03, 3.67, 3.38, and 2.85. Addition of water to the solution cleanly
converted 6 to 5 and methanol. We tentatively assign a fulvene structure to
6 as indicated in Scheme 3.
(4) (a) O’Connor, J. M.; Pu, L.; Rheingold, A. L. J. Am. Chem. Soc.
1989, 111, 4129. (b) O’Connor, J. M.; Pu, L.; Chadha, R. Angew. Chem.,
Int. Ed. Engl. 1990, 29, 543. (c) O’Connor, J. M.; Pu, L.; Rheingold, A. L.
J. Am. Chem. Soc. 1990, 112, 6232. (d) O’Connor, J. M.; Pu, L. J. Am.
Chem. Soc. 1990, 112, 9013. (e) O’Connor, J. M.; Pu, L.; Chadha, R. K. J.
Am. Chem. Soc. 1990, 112, 9627. (f) O’Connor, J. M.; Pu, L.; Rheingold,
A. L. J. Am. Chem. Soc. 1990, 112, 9663. (g) O’Connor, J. M.; Hiibner,
K.; Rheingold, A. L. J. Chem. Soc., Chem. Commun. 1995, 1209. (h)
O’Connor, J. M; Hiibner, K.; Merwin, R.; Pu, L.; Rheingold, A. L. J. Am.
Chem. Soc. 1995, 117, 8861.
(7) Characterization details are provided as Supporting Information.
(8) Summers, M. F.; Marzilli, L. G.; Bax, A. J. Am. Chem. Soc. 1986,
108, 4285.
(9) The η2-ethylene ligand in (CH3C(CH2PPh2)3)Ir(η2-CH2dCH2)Cl
exhibits resonances at δ 1.23 and 2.37 ppm in the 1H NMR spectrum (CD2-
Cl2) and at δ 26.2 ppm in the 13C NMR spectrum (CD2Cl2): Barbaro, P.;
Bianchini, C.; Meli, A.; Peruzzini, M.; Vacca, A.; Vizza, F. Organometallics
1991, 10, 2227.
(5) Collman, J. P.; Kang, J. W.; Little, W. F.; Sullivan, M. F. Inorg.
Chem. 1968, 7, 1298.
S0002-7863(97)00007-3 CCC: $14.00 © 1997 American Chemical Society