620
S.M. Mokhtar et al. / Journal of Fluorine Chemistry 131 (2010) 616–620
glass transition temperature (Tg = 236). Also, the polymer exhibits
a good solubility and high thermal stability as well as photo-
stability.
References
´
´
[1] J.M. Barrales-Rienda, J. Gonzalez Ramos, M. Sanchez Chaves, J. Polym. Sci., Polym.
Chem. 17 (1979) 81–96.
[2] A. Matsumoto, K. Takeshi, J. Appl. Polym. Sci. 68 (1998) 1703–1708.
[3] H.R. Allcock, F.W. Lampe, Contemporary Polymer Chemistry, 2nd ed., Hall Inc.,
Englewood Cliffs, NJ, 1990, 546 pp..
[4] H.M. Wei, V.R. Luc, V.D.G. Robert, Polym. Bull. 47 (2001) 321–328.
[5] I.J. Park, S.B. Lee, C.K. Choi, Polymer 38 (1997) 2523–2527.
[6] B. Ameduri, R. Bongiovanni, G. Malucelli, A. Pollicino, A. Priola, J. Polym. Sci. Part A:
Polym. Chem. 37 (1999) 77–87.
[7] V. Pomes, A. Fernandez, N. Costarramone, B. Grano, D. Houi, Colloids Surf. A:
Physicochem. Eng. Aspects 159 (1999) 481–490.
[8] S. Yang, J. Wang, K. Ogrino, S. Valiyaveettil, C.K. Ober, Chem. Mater. 12 (2000) 33–
40.
[9] J.R. Lee, F.L. Jin, S.J. Park, J.M. Park, Surf. Coat. Technol. 180 (2004) 650–654.
[10] L. Van Ravenstein, W. Ming, R.D. Van de Grampel, R. Van der Linde, G. deWith, T.
Loontjens, P.C. Thune, J.W. Niemantsverdriet, Macromolecules 37 (2004) 408–
413.
[11] J.R. Fried, Polymer Science and Technology, 2nd ed., Hall Lim, New Delhi, 2005,
pp. 402–404.
[12] Z. Ge, X.Y. Zhang, J.B. Dai, W.H. Li, Y.J. Luo, Eur. Polym. J. 45 (2009) 530–536.
[13] I. Erol, J. Fluorine Chem. 129 (2008) 613–620.
Fig. 5. Thermogravimertic analysis of PFPMI.
and the maximum decomposition temperature (Tmax
determined by thermogravimetric analysis. Fig. 5 shows the
thermogram for PFPMI in nitrogen at a heating rate of 10 8C minꢀ1
The diagram shows that the initial decomposition temperature
(Tinit) is equal to 384.72 8C with 10.39% weight loss, the maximum
decomposition temperature (Tmax) is equal to 585 8C with 28%
weight.
) were
.
[14] E. Sacher, Prog. Surf. Sci. 47 (1994) 273–300.
[15] A. Ghosh, S. Banerjee, H. Komber, K. Schneider, L. Ha¨ußler, B. Voit, Eur. Polym. J. 45
(2009) 1561–1569.
[16] F.R. Pu, R.L. Williams, T.K. Markkula, J.A. Hunt, Biomaterials 23 (2002) 2411–2428.
[17] A. Matsumoto, T. Kubota, T. Otsu, Macromolecules 23 (1990) 4508–4513.
[18] T. Otsu, A. Matsumoto, T. Kubota, S. Mori, Polym. Bull. 23 (1990) 43–50.
[19] B.J. Liu, G.B. Wang, W. Hu, Y.H. Jin, C.H. Chen, Z.H. Jiang, W.J. Zhang, Z.W. Wu, Y.
Wei, J. Polym. Sci. Part A: Polym. Chem. 40 (2002) 3392–3398.
[20] R.H. Vora, R.S.G. Krishnan, S.H. Goh, T.S. Chung, Adv. Funct. Mater. 11 (2001) 361–
373.
The data indicate that the PFPMI has an excellent thermal
stability as well as the other fluoro and maleimide polymers.
In addition, the glass transition (Tg) was determined by DSC. The
glass transition temperature (Tg) of PFMI was observed to be about
236 8C.
[21] V. Kute, S. Banerjee, Macromol. Chem. Phys. 204 (2003) 2105–2112.
[22] Y. Niu, X. Zhu, L. Liu, Y. Zhang, G. Wang, Z. Jiang, React. Funct. Polym. 66 (2006)
559–566.
[23] T.T. Serafini, P. Delvigs, G.R. Lightsey, J. Appl. Polym. Sci. 16 (1972) 905–915.
[24] B.A. Rozenberg, G.N. Boiko, R.J. Morgan, E.E. Shin, Polym. Sci. Ser. A 43 (2001) 386–
399.
PFPMI showed good thermal and photo-stability. The polymer
did not show any changes in appearance when it was heated in air
up to 400 8C. Furthermore, it did not show any change in
appearance or weight loss when it was exposed to the UV lamb
of long and short wave for an interval time of 10 days. The FTIR
spectra of the heated samples or the exposed samples showed no
changes in the position of the characteristic peaks. This means that
the structure of the treated sample did not change.
From the above, we can conclude that PFPMI have an excellent
thermal and photo-stability.
[25] S. Iwatsuki, M. Kubo, M. Wakita, Y. Matsui, H. Kanoh, Macromolecules 24 (1991)
5009–5014.
[26] A. Matsumoto, Y. Oki, T. Otsu, Eur. Polym. J. 29 (1993) 1225–1229.
[27] T. Oishi, H. Yamaski, M. Fujimoto, J. Polym. 23 (1991) 795–804.
[28] T. Sato, K. Masaki, K. Kondo, M. Seno, H. Tanaka, Polym. Bull. 35 (1995) 345–350.
[29] T. Oishi, M. Fujimoto, J. Polym. Sci., Polym. Chem. 22 (1984) 2789–2800.
[30] M.Z. El Sabee, S. Mokhtar, Eur. Polym. J. 19 (1983) 451–456.
[31] J. Lokaj, F. Hrabak, Eur. Polym. J. 14 (1978) 1039–1043.
[32] J.E. Wang, Y.T. Chern, M.A. Chung, J. Polym. Sci. Part A: Polym. Chem. 34 (1996)
3345–3354.
4. Conclusion
[33] A. Matsumoto, T. Kimura, J. Macromol. Sci. Pure Appl. Chem. Part A 33 (1996)
1049–1061.
[34] S.F. Parker, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 51 (1995) 2067–
2072.
[35] H. Aida, I. Takase, T. Nozi, Macromol. Chem. Phys. 190 (1989) 2821–2831.
[36] K. Qiu, K. Ye, J. Acta Polym. Sin. 1 (1993) 125–128 (in Chinese).
[37] A. Matsumoto, T. Kubota, H. Ito, T. Otsu, J. Mem. Fac. Eng. Img., Osaka City Univ. 31
(1990) 47–59.
[38] T. Oishi, K. Sase, K. Saeki, S. Yao, K. Ohdan, Polymer 36 (1997) 3935–3942.
[39] M. Yamada, I. Takase, N. Koutou, J. Polym. Sci. B, Polym. Lett. 6 (1968) 883–888.
[40] N.E. Searle (Inventor), US Patent, 2,444,356 (1948).
[41] P. Ghosh, Polymer Science and Technology Plastics, Rubbers, Blends and
Composites, 2nd ed., Tata McGraw-Hill, 2002.
The new trifluoromethyl phenoxy N-phenyl-maliemide mono-
mer was synthesized and characterized. The free radical polymeri-
zation of FPMI was initiated by azobisisobutyronitrile in 1,4-
dioxane. The characterizations of the polymer as well as the rates
of free radical polymerization were studied. The activation energy
D
E of the polymerization was calculated and it is found to be equal
to 48.94 kJ/mol.
The FPMI polymer has a high molecular weight. The average
molecular weight ðMw and MnÞ and polydispersity index are equal
to 73,500, 16,700 and 2.27, respectively. The PFPMI bosses high
[42] P.C. Dawson, D.J. Blundell, Polymer 21 (1980) 577–578.