4
Tetrahedron Letters
Byeon, S. R.; Kim, Y. S.; Lim, S. J.; Oh, S. J.; Dae, K. H.; Moon, H.
C.; Chung, B. Y.; Kim, D. J. Bioorg. Med. Chem. Lett. 2008, 18, 5701.
(3) (a) Norman, M. H.; Minick, D. J.; Rigdon, G. C. J. Med. Chem.
1996, 39, 149. (b) Lawrence, N. J.; Liddle, J.; Bushell, S.; Jackson, D.
A. J. Org. Chem. 2002, 67, 457. (c) Park, J. S.; Moon, S. C.; Baik, K.
U.; Cho, J. Y.; Yoo, E. S.; Byun, Y. S.; Park, M. H. Arch. Pharmacal
Res. 2002, 125, 137. (d) T. Libbers, P.Angehrn, H. Gminder, S.
Herzig, Bioorg. Med. Chem. Lett. 2007, 17, 4708. (e) Uno, M.; Ban,
H. S.; Nakamura, H. Bioorg. Med. Chem. Lett. 2009, 19, 3166.
(f) Ghosh, U.; Bhattacharyya, R.; Keche, A. Tetrahedron 2010, 66,
2148.
(4) For selected examples, see: (a) Hozl, J. Collect. Czech. Chem.
Commun. 1971, 35, 2775. (b) Ang, W. S.; Halton, B. Aust. J. Chem.
1971, 24, 851. (c) Ahmed, A.; Clayden, J.; Yasin, S. A. Chem.
Commun. 1999, 231. (d) Huang, X.; Xu, J. J. Org. Chem. 2009, 74,
8859. (e) Epsztajn, J.; Grzelak, R.; Jóźwiak, A. Synthesis 1996, 1212.
(f) Guillaumel, J.; Boccara, N.; Demersemann, P.; Royer, R. J. Chem.
Soc., Chem. Commun. 1988, 1604. (g) Griesbeck, A. G.; Hirt, J.;
Kramer, W.; Dallakian, P. Tetrahedron 1998, 54, 3169.
afforded 3a in 82% yield (Scheme 3, b). However, when methyl
2-formylbenzoate 4 was employed instead of 1a, no product 3a
was found and the imine 5b was obtained under the standard
conditions(Scheme 3, c). This result shows that the carboxylic
acid moiety functions as not only the crucial activator of
Hantzsch ester transfer hydrogenative process but also the
promoter of the following amide formation event.
On the basis of literature precedents16 and our present findings,
a plausible reaction mechanism for the formation of 3a is
depicted in Scheme 4. Initially, phthalaldehydic acid 1a reacts
with aniline 2a to afford the imine 5a with an intramolecular
hydrogen bond, which could be converted into isobenzofuranone
5a’,16e, 16j the imine 5a and isobenzofuranone 5a’ probably exist
as an equilibrium.16i Subsequent intramolecular activation of this
imine moiety by the carboxylic acid moiety via protonation,
followed by an intermolecular transfer hydrogenation with the
coming
Hantzsch
ester
to
form
the
2-
((phenylamino)methyl)benzoic acid 6, further intramolecular
cyclization takes place to furnish the final product 3a.
(5) Khan, M. W.; Reza, A. F. G. M. Tetrahedron 2005, 61, 11204.
(6) (a) Aoun, R.; Renaud, J.-L.; Dixneuf, P. H.; Bruneau, C. Angew.
Chem. Int. Ed. 2005, 44, 2021. (b) Das, S.; Addis, D.; Knöpke, L. R.;
Bentrup, U.; Junge, K.; Brückner, A.; Beller, M. Angew. Chem., Int.
Ed. 2011, 50, 9180. (c) Jóźwiak, A.; Zagórski, P. M.; Płotka, M. W.;
Cal, D. Tetrahedron Lett. 2014, 55, 2420.
Conclusions
In conclusion, we have developed an efficient catalyst-free
reductive amination/cyclization cascade of 2-formylbenzoic acids
with amines for the construction of biologically important
isoindolinone derivatives. This approach operates with a cheap
while widely accessible Hantzsch ester as the reductant,
providing a straightforward thus viable synthetic route toward
the syntheses of medicinally relevant isoindolinones.
Intriguingly, the robust scalability of this method renders the
potential application in industrial synthesis. Further development
of more methods by applying a similar strategy while aiming at
the efficient syntheses of biologically active compounds, is still
underway in our laboratory.
(7) (a) Nozawa-Kumada, K.; Kadokawa, J.; Kameyama, T.; Kondo,
Y. Org. Lett. 2015, 17, 4479. (b) Zhu, C.; Liang, Y.; Hong, X.; Sun,
H.; Sun, W.-Y.; Houk, K. N.; Shi, Z. J. Am. Chem. Soc. 2015, 137,
7564. (c) Verma, A.; Patel, S.; Meenakshi; Kumar, A.; Yadav, A.;
Kumar, S.; Jana, S.; Sharma, S.; Prasad, Ch. D.; Kumar, S. Chem.
Commun. 2015, 51, 1371. (d) Yamamoto, C.; Takamatsu, K.; Hirano,
K.; Miura, M. J. Org. Chem. 2016, 81, 7675. (e) Bedford, R. B.;
Bowen, J. G.; Méndez-Gálvez, C. J. Org. Chem. 2017, 82, 1719.
(8) (a) Rousseaux, S.; Gorelsky, S. I.; Chung, B. K. W.; Fagnou, K. J. Am.
Chem. Soc. 2010, 132, 10692. (b) Wertjes, W.; Wolfe, L. C.;Waller, P.
J.; Kalyani, D. Org. Lett. 2013, 15, 5986. (c) Chen, W.; Jin, L.; Zhu,
Y.; Cao, X.; Zheng, L.; Mo, W. Synlett 2013, 24, 1856. (d) Bhakuni,
B. S.; Yadav, A.; Kumar, S.; Patel, S.; Sharma, S.; Kumar, S. J. Org.
Chem. 2014, 79, 2944.
Acknowledgments
(9) (a) Grigg, R.; Sridharan, V.; Suganthan, S.; Bridge, A. W.
Tetrahedron 1995, 51, 295. (b) Grigg, R.; MacLachlan, W. S.;
MacPherson, D. T.; Sridharan, V.; Suganthan, S.; Thornton-Pett, M.;
Zhang, J. Tetrahedron 2000, 56, 6585. (c) Grigg, R.; Zhang, L.;
Collard, S.; Keep, A. Tetrahedron Lett. 2003, 44, 6979. (d) Grigg, R.;
Sridharan, V.; Thayaparan, A. Tetrahedron Lett. 2003, 44, 9017. (e)
Orito, K.; Horibata, A.; Nakamura, T.; Ushito, H.; Nagasaki, H.;
Yuguchi, M.; Yamashita, S.; Tokuda, M. J. Am. Chem. Soc. 2004,
126, 14342. (f) Orito, K.; Miyazawa, M.; Nakamura, T.; Horibata, A.;
Ushito, H.; Nagasaki, H.; Yuguchi, M.; Yamashita, S.; Yamazaki, T.;
Tokuda, M. J. Org. Chem. 2006, 71, 5951. (g) Marosvölgyi-Haskó,
D.; Takács, A.; Riedl, Z.; Kollár, L. Tetrahedron 2011, 67, 1036.
(10) (a) Shi, L.; Hu, L.; Wang, J.; Cao, X.; Gu, H. Org. Lett. 2012, 14,
1876. (b) Kumar, V.; Sharma, S.; Sharma, U.; Singh, B.; Kumar, N.
Green Chem. 2012, 14, 3410. (c) Kumar, V.; Sharma, U.; Verma, P.
K.; Kumar, N.; Singh, B. Adv. Synth. Catal. 2012, 354, 870.
(d) Kumar, V.; Sharma, U.; Singh, B.; Kumar, N. Aust. J. Chem.
2012, 65, 1594. (e) Nayal, O. S.; Thakur, M. S.; Bhatt, V.; Kumar, M.;
Kumar, N.; Singh, B.; Sharma, U. Chem. Commun. 2016, 52, 9648. (f)
Mao, F.; Sui, D. j.; Qi, Z.; Fan, H.; Chen, R.; Huang, J. RSC Adv.
2016, 6, 94068. (g) Fasano, V.; Radcliffe, J. E.; Ingleson, M. J. ACS
Catal., 2016, 6, 1793. (h)Zhou, Y.; Chen, P.; Lv, X.; Niu, J.; Wang,
Y.; Lei, M.; Hu, L. Tetrahedron Lett. 2017, 58, 2232.
We are grateful for financial support from the National
Natural Science Foudation of China (No.21572123, 21172138
and 21302117), the Fundamental Research Funds for the Central
Universities (GK201601003 and GK201603047) and the
Distinguished Doctoral Research Funds from Shaanxi Normal
University (S2011YB04).
Supplementary data
Supplementary data associated with this article can be found,
in the online version, at
References
(1) (a) Valencia, E.; Freyer, A. J.; Shamma, M.; Fajardo, V. Tetrahedron
Lett. 1984, 25, 599. (b) Desai, S. J.; Chaturvedi, R.; Mulchandani, N.
B. J. Nat. Prod. 1990, 53, 496. (c) Speck, K.; Magauer, T. J. Org.
Chem. 2013, 9, 2048.
(2) (a) Xu, X.; de Guzman, F. S.; Gloer, J. B. J. Org. Chem. 1992, 57,
6700. (b) Egbertson, M. S.; Hartman, G. D.; Gould, R. J.; Bednar, R.
A.; Cook, J. J.; Gaul, S. L.; Holahan, M. A.; Libby, L. A.; Lynch, J. J.;
Sitko, G. R.; Stranieri, M. T.; Vassallo, L. M. Bioorg. Med. Chem.
Lett. 1996, 6, 2519. (c) Boger, D. L.; Lee, J. K.; Goldberg, J.; Jin, Q. J.
Org. Chem. 2000, 65, 1467. (d) Wehlan, H.; Jezek, E.; Lebrasseur, N.;
Pave, G.; Roulland, E.; White, A. J. P.; Burrows, J. N.; Barett, A. G.
M. J. Org. Chem. 2006, 71, 8151. (e) Lee, S.; Shinji, C.; Ogura, K.;
Shimizu, M.; Maeda, S.; Sato, M.; Yoshida, M.; Hashimotoa, Y.;
Miyachi, H. Bioorg. Med. Chem. Lett. 2007, 17, 4895. (f) Lee, J. H.;
(11) (a) Deguest, G.; Devineau, A.; Bischoff, L.; Fruit, C.; Marsais, F. Org.
Lett. 2006, 8, 5889. (b)Wan, J.; Zhou, J.; Mao, H.; Pan, Y.; Wu, A.
Tetrahedron 2008, 64, 11115. (c) Mamidyala, S. K.; Cooper, M. A.
Chem. Commun. 2013, 49, 8407. (d) Adachi, S.; Onozuka, M.;
Yoshida, Y.; Ide, M.; Saikawa, Y.; Nakata, M. Org. Lett. 2013, 16,
358. (e) Hong, X.; Wang, H.; Liu, B.; Xu, B.; Chem. Commun. 2014,
50, 14129. (f) Wang, P.-M.; Pu, F.; Liu, K.-Y.; Li, C.-J.; Liu, Z.-W.;
Shi, X.-Y.; Fan, J.; Yang, M.-Y.; Wei, J.-F. Chem. Eur. J. 2016, 22,