RSC Medicinal Chemistry
Research Article
4 T. Tanaka and R. Ishigamori, Understanding carcinogenesis
for fighting oral cancer, J. Oncol., 2011, 2011, 603740, DOI:
10.1155/2011/603740.
18 R. Porta, A. Puglisi, G. Colombo, S. Rossi and M. Benaglia,
Continuous-flow synthesis of primary amines: Metal-free
reduction of aliphatic and aromatic nitro derivatives with
trichlorosilane, Beilstein J. Org. Chem., 2016, 12, 2614–2619,
DOI: 10.3762/bjoc.12.257.
19 H. G. Jolliffe and D. I. Gerogiorgis, Chemical Engineering
Research and Design Process modelling and simulation for
continuous pharmaceutical manufacturing of ibuprofen,
Chem. Eng. Res. Des., 2014, 97, 175–191, DOI: 10.1016/j.
cherd.2014.12.005.
5 I. S. Fernández, P. Cuevas, J. Angulo, P. López-Navajas, Á.
Canales-Mayordomo, R. González-Corrochano, R. M. Lozano,
S. Valverde, J. Jiménez-Barbero, A. Romero and G. Giménez-
Gallego, Gentisic acid, a compound associated with plant
defense and a metabolite of aspirin, heads a new class of
in vivo fibroblast growth factor inhibitors, J. Biol. Chem.,
2010, 285, 11714–11729, DOI: 10.1074/jbc.M109.064618.
6 S. Tsao, T. Hsia and M. Yin, Protocatechuic Acid Inhibits
Lung Cancer Cells by Modulating FAK, MAPK, and NF- κ B
Pathways, Nutr. Cancer, 2014, 66, 1331–1341, DOI: 10.1080/
01635581.2014.956259.
20 S. D. Schaber, D. I. Gerogiorgis, R. Ramachandran, J. M. B.
Evans, P. I. Barton and B. L. Trout, Economic analysis of
integrated
continuous
and
batch
pharmaceutical
manufacturing: A case study, Ind. Eng. Chem. Res., 2011, 50,
10083–10092, DOI: 10.1021/ie2006752.
7 P. J. Benny, G. Shibumon, K. Sunny and G. Cincy, 2,3-
Dihydroxybenzoic Acid
Isolated from Flacourtia inermis Fruit, Int. J. Pharm. Clin.
Res., 2010, 2, 101–105.
:
An Effective Antifungal Agent
21 D. Medicine, C. N. Waer, P. Kaur, Z. Tumur, D. D. Hui, B.
Le, C. Guerra, B. Henson, D. Seleem and J. Lewis,
Rosmarinic Acid
/ Blue Light Combination Treatment
8 B. Alcalde, M. Granados and J. Saurina, Exploring the
antioxidant features of polyphenols by spectroscopic and
electrochemical methods, Antioxidants, 2019, 8(11), 523,
DOI: 10.3390/antiox8110523.
9 R. Gérardy, N. Emmanuel, T. Toupy, V. E. Kassin, N. N.
Tshibalonza, M. Schmitz and J. C. M. Monbaliu, Continuous
Flow Organic Chemistry: Successes and Pitfalls at the
Interface with Current Societal Challenges, Eur. J. Org.
Chem., 2018, 2018, 2301–2351, DOI: 10.1002/ejoc.201800149.
10 M. Baumann and I. R. Baxendale, Batch and Flow Synthesis
of Pyrrolo[1,2-a]-quinolines via an Allene-Based Reaction
Cascade, J. Org. Chem., 2015, 80, 10806–10816, DOI: 10.1021/
acs.joc.5b01982.
Inhibits Head and Neck Squamous Cell Carcinoma In Vitro,
Anticancer Res., 2020, 758, 751–758, DOI: 10.21873/
anticanres.14006.
22 N. Beech, S. Robinson, S. Porceddu and M. Batstone, Dental
management of patients irradiated for head and neck
cancer, Aust. Dent. J., 2014, 59, 20–28, DOI: 10.1111/
adj.12134.
23 D. L. Browne, B. J. Deadman, R. Ashe, I. R. Baxendale and
S. V. Ley, Continuous Flow Processing of Slurries: Evaluation
of an Agitated Cell Reactor, Org. Process Res. Dev., 2011, 15,
693–697, DOI: 10.1021/op2000223.
24 C. Battilocchio, I. R. Baxendale, M. Biava, M. O. Kitching
and
S.
V.
Ley,
A
Flow-Based
Synthesis
of
11 B. Gutmann, P. Elsner, A. O'Kearney-Mcmullan, W. Goundry,
2-Aminoadamantane-2-carboxylic Acid, Org. Process Res. Dev.,
2012, 16, 798–810, DOI: 10.1021/op300084z.
D. M. Roberge and C. O. Kappe, Development of
a
Continuous Flow Sulfoxide Imidation Protocol Using Azide
Sources under Superacidic Conditions, Org. Process Res. Dev.,
2015, 19, 1062–1067, DOI: 10.1021/acs.oprd.5b00217.
12 M. Baumann, T. S. Moody, M. Smyth and S. Wharry, A
Perspective on Continuous Flow Chemistry in the
Pharmaceutical Industry, Org. Process Res. Dev., 2020, DOI:
10.1021/acs.oprd.9b00524.
13 M. B. Plutschack, B. Pieber, K. Gilmore and P. H. Seeberger,
The Hitchhiker's Guide to Flow Chemistry â¥, Chem. Rev.,
2017, 117, 11796–11893, DOI: 10.1021/acs.chemrev.7b00183.
14 S. Kobayashi, Flow “fine” Synthesis: High Yielding and
Selective Organic Synthesis by Flow Methods, Chem.: Asian
J., 2016, 11, 425–436, DOI: 10.1002/asia.201500916.
25 P. Filipponi, A. Gioiello and I. R. Baxendale, Controlled Flow
Precipitation as a Valuable Tool for Synthesis, Org. Process
Res. Dev., 2016, 20, 371–375, DOI: 10.1021/acs.oprd.5b00331.
26 R. L. Hartman, Managing Solids in Microreactors for the
Upstream Continuous Processing of Fine Chemicals, Org.
Process Res. Dev., 2012, 16, 870–887, DOI: 10.1021/op200348t.
27 M. F. Sainz, J. A. Souto, D. Regentova, M. K. G. Johansson,
S. T. Timhagen, D. J. Irvine, P. Buijsen, C. E. Koning, R. A.
Stockman and S. M. Howdle, A facile and green route to
terpene derived acrylate and methacrylate monomers and
simple free radical polymerisation to yield new renewable
polymers and coatings, Polym. Chem., 2016, 7, 2882–2887,
DOI: 10.1039/c6py00357e.
15 S. V. Ley, D. E. Fitzpatrick, R. M. Myers, C. Battilocchio and
R. J. Ingham, Machine-Assisted Organic Synthesis, Angew.
Chem., Int. Ed., 2015, 54, 10122–10136, DOI: 10.1002/
anie.201501618.
16 D. T. McQuade and P. H. Seeberger, Applying flow
chemistry: Methods, materials, and multistep synthesis,
J. Org. Chem., 2013, 78, 6384–6389, DOI: 10.1021/jo400583m.
17 D. Webb and T. F. Jamison, Continuous flow multi-step
organic synthesis, Chem. Sci., 2010, 1, 675–680, DOI:
10.1039/c0sc00381f.
28 J. A. Jara, D. Rojas, V. Castro-Castillo, S. Fuentes-Retamal, C.
Sandoval-Acuña, E. Parra, M. Pavani, J. D. Maya, J. Ferreira
and M. Catalán, Novel benzoate-lipophilic cations selectively
induce cell death in human colorectal cancer cell lines,
Toxicol. In Vitro, 2020, 65, 104814, DOI: 10.1016/j.
tiv.2020.104814.
29 J. Grundlingh, P. I. Dargan, M. El-Zanfaly and D. M. Wood,
2,4-Dinitrophenol (DNP):
A
Weight Loss Agent with
Significant Acute Toxicity and Risk of Death, J. Med. Toxicol.,
2011, 7, 205–212, DOI: 10.1007/s13181-011-0162-6.
This journal is © The Royal Society of Chemistry 2020
RSC Med. Chem.