Organic Letters
Letter
Spangler, J. E.; Zhu, H.; Zhu, J.; Baran, P. S. Strain-Release
Heteroatom Functionalization: Development, Scope, and Stereo-
specificity. J. Am. Chem. Soc. 2017, 139, 3209−3226. (d) Kanazawa, J.;
Maeda, K.; Uchiyama, M. Radical Multicomponent Carboamination
of [1.1.1]Propellane. J. Am. Chem. Soc. 2017, 139, 17791−17794.
[1.1.1]Propellane Enables Direct Access to High-Value 3-
Alkylbicyclo[1.1.1]pentan-1-amines. Org. Lett. 2019, 21, 6800−6804.
(6) Wiberg, K. B.; Walker, F. H. [1.1.1]Propellane. J. Am. Chem. Soc.
1982, 104, 5239−5240.
(7) Adcock, J. L.; Gakh, A. A. Nucleophilic substitution in 1-
substituted 3-iodobicyclo[1.1.1]pentanes. A new synthetic route to
functionalized bicyclo[1.1.1]pentane derivatives. J. Org. Chem. 1992,
57, 6206−6210.
(8) Jarosch, O.; Walsh, R.; Szeimies, G. Kinetics and Mechanism of
the Thermal Rearrangement of [1.1.1]Propellane. J. Am. Chem. Soc.
2000, 122, 8490−8494.
̈
(3) (a) Messerschmidt, M.; Scheins, S.; Grubert, L.; Patzel, M.;
Szeimies, G.; Paulmann, C.; Luger, P. Electron Density and Bonding
at Inverted Carbon Atoms: An Experimental Study of a [1.1.1]-
Propellane Derivative. Angew. Chem., Int. Ed. 2005, 44, 3925−3928.
(b) Wu, W.; Gu, J.; Song, J.; Shaik, S.; Hiberty, P. C. The inverted
bond in [1.1.1]propellane is a charge-shift bond. Angew. Chem., Int.
Ed. 2009, 48, 1407−10. (c) Chaquin, P.; Laplaza, R.; Contreras-
Garcia, J.; Fuster, F.; Volatron, F. The ‘inverted Bonds’ revisited.
Analysis of ‘in silico’ models and of [1.1.1]Propellane using Orbital
(4) Semmler, K.; Szeimies, G.; Belzner, J. Tetracyclo[5.1.0.01,6.02,7]-
octane, a [1.1.1]propellane derivative, and a new route to the parent
hydrocarbon. J. Am. Chem. Soc. 1985, 107, 6410−6411.
(5) (a) Stepan, A. F.; Subramanyam, C.; Efremov, I. V.; Dutra, J. K.;
O’Sullivan, T. J.; DiRico, K. J.; McDonald, W. S.; Won, A.; Dorff, P.
H.; Nolan, C. E.; Becker, S. L.; Pustilnik, L. R.; Riddell, D. R.;
Kauffman, G. W.; Kormos, B. L.; Zhang, L.; Lu, Y.; Capetta, S. H.;
Green, M. E.; Karki, K.; Sibley, E.; Atchison, K. P.; Hallgren, A. J.;
Oborski, C. E.; Robshaw, A. E.; Sneed, B.; O’Donnell, C. J.
Application of the Bicyclo[1.1.1]pentane Motif as a Nonclassical
Phenyl Ring Bioisostere in the Design of a Potent and Orally Active γ-
Secretase Inhibitor. J. Med. Chem. 2012, 55, 3414−3424. (b) Goh, Y.
L.; Tam, E. K. W.; Bernardo, P. H.; Cheong, C. B.; Johannes, C. W.;
William, A. D.; Adsool, V. A. A New Route to Bicyclo[1.1.1]pentan-1-
amine from 1-Azido-3-iodobicyclo[1.1.1]pentane. Org. Lett. 2014, 16,
1884−1887. (c) Goh, Y. L.; Adsool, V. A. Radical fluorination
powered expedient synthesis of 3-fluorobicyclo[1.1.1]pentan-1-amine.
Org. Biomol. Chem. 2015, 13, 11597−11601. (d) Thirumoorthi, N. T.;
Jia Shen, C.; Adsool, V. A. Expedient synthesis of 3-
phenylbicyclo[1.1.1]pentan-1-amine via metal-free homolytic aro-
matic alkylation of benzene. Chem. Commun. 2015, 51, 3139−3142.
(e) Measom, N. D.; Down, K. D.; Hirst, D. J.; Jamieson, C.; Manas, E.
S.; Patel, V. K.; Somers, D. O. Investigation of a Bicyclo[1.1.1]-
pentane as a Phenyl Replacement within an LpPLA2 Inhibitor. ACS
Med. Chem. Lett. 2017, 8, 43−48. (f) Makarov, I. S.; Brocklehurst, C.
E.; Karaghiosoff, K.; Koch, G.; Knochel, P. Synthesis of
Bicyclo[1.1.1]pentane Bioisosteres of Internal Alkynes and para-
Disubstituted Benzenes from [1.1.1]Propellane. Angew. Chem., Int. Ed.
2017, 56, 12774−12777. (g) Goh, Y. L.; Cui, Y. T.; Pendharkar, V.;
Adsool, V. A. Toward Resolving the Resveratrol Conundrum:
Synthesis and in Vivo Pharmacokinetic Evaluation of BCP−
Resveratrol. ACS Med. Chem. Lett. 2017, 8, 516−520. (h) Caputo,
(9) (a) Noyori, R.; Suzuki, T.; Kumagai, Y.; Takaya, H. Nickel-
catalyzed reactions involving strained.sigma. bonds. II. Nickel(0)-
catalyzed reaction of bicyclo[1.1.0] butanes with olefins. J. Am. Chem.
Soc. 1971, 93, 5894−5896. (b) Noyori, R.; Suzuki, T.; Takaya, H.
Nickel-catalyzed reactions involving strained.sigma. bonds. III.
Nickel(0)-catalyzed reaction of bicyclo[2.1.0]pentane with olefins. J.
Am. Chem. Soc. 1971, 93, 5896−5897.
(10) Wiberg, K. B.; Waddell, S. T. Reactions of [1.1.1]propellane. J.
Am. Chem. Soc. 1990, 112, 2194−2216.
(11) During the preparation of this manuscript, an iridium-
photoredox reaction was described that follows a radical pathway to
gain a wide variety of bicyclopentanes. Nugent, J.; Arroniz, C.; Shire,
B. R.; Sterling, A. J.; Pickford, H. D.; Wong, M. L. J.; Mansfield, S. J.;
Caputo, D. F. J.; Owen, B.; Mousseau, J. J.; Duarte, F.; Anderson, E.
A. A General Route to Bicyclo[1.1.1]pentanes through Photoredox
Catalysis. ACS Catal. 2019, 9, 9568−9574.
(12) (a) Brinker, U. H.; Weber, J. 1,2-Dimethylspiro[2.3]hex-1-ene
by addition of cyclobutylidene to 2-butyne. Tetrahedron Lett. 1986,
27, 5371−5374. (b) Rosenberg, M. G.; Schrievers, T.; Brinker, U. H.
Competitive 1,2-C Atom Shifts in the Strained Carbene Spiro[3.3]-
hept-1-ylidene Explained by Distinct Ring-Puckered Conformers. J.
Org. Chem. 2016, 81, 12388−12400.
(13) See details in the SI. It is interesting to note that slight
variations of the conditions could avoid dimerization; see: Kanazawa,
J.; Maeda, K.; Uchiyama, M. Radical Multicomponent Carboamina-
tion of [1.1.1]Propellane. J. Am. Chem. Soc. 2017, 139, 17791−17794.
(14) (a) Xiao, Q.; Xia, Y.; Li, H.; Zhang, Y.; Wang, J. Coupling of N-
Tosylhydrazones with Terminal Alkynes Catalyzed by Copper(I):
Synthesis of Trisubstituted Allenes. Angew. Chem., Int. Ed. 2011, 50,
1114−1117. (b) Hossain, M. L.; Ye, F.; Zhang, Y.; Wang, J. CuI-
Catalyzed Cross-Coupling of N-Tosylhydrazones with Terminal
Alkynes: Synthesis of 1,3-Disubstituted Allenes. J. Org. Chem. 2013,
78, 1236−1241. (c) Lim, J.; Choi, J.; Kim, H.-S.; Kim, I. S.; Nam, K.
C.; Kim, J.; Lee, S. Synthesis of Terminal Allenes via a Copper-
Catalyzed Decarboxylative Coupling Reaction of Alkynyl Carboxylic
Acids. J. Org. Chem. 2016, 81, 303−308. (d) Chu, W.-D.; Zhang, L.;
Zhang, Z.; Zhou, Q.; Mo, F.; Zhang, Y.; Wang, J. Enantioselective
Synthesis of Trisubstituted Allenes via Cu(I)-Catalyzed Coupling of
Diazoalkanes with Terminal Alkynes. J. Am. Chem. Soc. 2016, 138,
14558−14561. (e) Xu, S.; Chen, R.; Fu, Z.; Gao, Y.; Wang, J. Cu(I)-
Catalyzed Coupling of Bis(trimethylsilyl)diazomethane with Terminal
Alkynes: A Synthesis of 1,1-Disilyl Allenes. J. Org. Chem. 2018, 83,
6186−6192. (f) Zhong, K.; Shan, C.; Zhu, L.; Liu, S.; Zhang, T.; Liu,
F.; Shen, B.; Lan, Y.; Bai, R. Theoretical Study of the Addition of Cu−
Carbenes to Acetylenes to Form Chiral Allenes. J. Am. Chem. Soc.
2019, 141, 5772−5780.
D. F. J.; Arroniz, C.; Durr, A. B.; Mousseau, J. J.; Stepan, A. F.;
̈
Mansfield, S. J.; Anderson, E. A. Synthesis and applications of highly
functionalized 1-halo-3-substituted bicyclo[1.1.1]pentanes. Chem. Sci.
̈
̈
2018, 9, 5295−5300. (i) Bar, R. M.; Kirschner, S.; Nieger, M.; Brase,
S. Alkyl and Aryl Thiol Addition to [1.1.1]Propellane: Scope and
Limitations of a Fast Conjugation Reaction. Chem. - Eur. J. 2018, 24,
1373−1382. (j) Auberson, Y. P.; Brocklehurst, C.; Furegati, M.;
Fessard, T. C.; Koch, G.; Decker, A.; La Vecchia, L.; Briard, E.
Improving Nonspecific Binding and Solubility: Bicycloalkyl Groups
and Cubanes as para-Phenyl Bioisosteres. ChemMedChem 2017, 12,
(15) (a) Crabbe, P.; Schlemper, E. O.; Fair, K.; Tran, P. T.; Searles,
S. Allene Synthesis by Organo-Metallic Reactions. Isr. J. Chem. 1985,
̈
̈
590−598. (k) Bar, R. M.; Heinrich, G.; Nieger, M.; Fuhr, O.; Brase, S.
Insertion of [1.1.1]propellane into aromatic disulfides. Beilstein J. Org.
Chem. 2019, 15, 1172−1180. (l) Trongsiriwat, N.; Pu, Y.; Nieves-
Quinones, Y.; Shelp, R. A.; Kozlowski, M. C.; Walsh, P. J. Reactions of
2-Aryl-1,3-Dithianes and [1.1.1]Propellane. Angew. Chem., Int. Ed.
2019, 58, 13416−13420. (m) Kondo, M.; Kanazawa, J.; Ichikawa, T.;
Shimokawa, T.; Nagashima, Y.; Miyamoto, K.; Uchiyama, M.
Silaboration of [1.1.1]Propellane: A Storable Feedstock for
Bicyclo[1.1.1]pentane Derivatives. Angew. Chem., Int. Ed. 2019,
A.; Chen, A. C. Y.; Burch, J. D.; Gleason, J. L. Aminoalkylation of
́
́
26, 147−151. (b) Crabbe, P.; Fillion, H.; Andre, D.; Luche, J.-L.
Efficient homologation of acetylenes to allenes. J. Chem. Soc., Chem.
Commun. 1979, 859−860. (c) Kitagaki, S.; Komizu, M.; Mukai, C.
́
Can the Crabbe Homologation Be Successfully Applied to the
Synthesis of 1,3-Disubstituted Allenes? Synlett 2011, 2011, 1129−
1132. (d) Kuang, J.; Tang, X.; Ma, S. Zinc diiodide-promoted
synthesis of trisubstituted allenes from propargylic amines. Org. Chem.
Front. 2015, 2, 470−475.
(16) (a) Bailey, W. F.; Aspris, P. H. Facile Preparation of
Alkenylidenecycloalkanes by Cyclization of Acetylenic Alkyllithiums
E
Org. Lett. XXXX, XXX, XXX−XXX