Organic Letters
Letter
and the liberated amine was acylated with 48 using EDCI and
DMAP in CH2Cl2 to give 22 in 54% yield over two steps. Finally,
global deprotection of six acid labile protecting groups by BCl3 in
CH2Cl2 followed by quenching with NaOMe resulted in clean
conversion and successfully afforded 1 in 97% yield. The
analytical data for synthetic 1 were in good agreement with the
previously reported data.8,9
REFERENCES
■
(1) Isolation: (a) Takatsuki, A.; Arima, K.; Tamura, G. J. Antibiot. 1971,
24, 215. (b) Takatsuki, A.; Tamura, G. J. Antibiot. 1971, 24, 224.
Takatsuki, A.; Tamura, G. J. Antibiot. 1971, 24, 232. (c) Takatsuki, A.;
Tamura, G. J. Antibiot. 1971, 24, 785.
(2) Structure elucidation: (a) Ito, T.; Kodama, Y.; Kawamura, K.;
Suzuki, K.; Takatsuki, A.; Tamura, G. Agric. Biol. Chem. 1977, 41, 2303.
(b) Takatsuki, A.; Kawamura, K.; Okina, M.; Kodama, Y.; Ito, T.;
Tamura, G. Agric. Biol. Chem. 1977, 41, 2307. (c) Ito, T.; Takatsuki, A.;
Kawamura, K.; Sato, K.; Tamura, G. Agric. Biol. Chem. 1980, 44, 695.
(3) Biosynthesis: (a) Tsvetanova, B. C.; Kiemle, D. J.; Price, N. P. J. J.
Biol. Chem. 2002, 38, 35289. (b) Wyszynski, F. J.; Lee, S.-S.; Yabe, T.;
Wang, H.; Gomez-Escribano, J. P.; Bibb, M. J.; Lee, S.-J.; Davies, G. J.;
Davis, B. G. Nat. Chem. 2012, 4, 539.
(4) Tunicamycin; Tamura, G., Ed.; Japan Scientific Press: Tokyo, 1982.
(5) (a) Schwarz, R. T.; Datema, R. Trends Biochem. Sci. 1980, 5, 65.
(b) Elbein, A. D. Trends Biochem. Sci. 1981, 6, 219. (c) Morin, M. J.;
Bernacki, R. J. Cancer Res. 1983, 43, 1669.
(6) (a) Kimura, K.; Bugg, T. D. D. Nat. Prod. Rep. 2003, 20, 252.
(b) Bugg, T. D. H.; Lloyd, A. J.; Roper, D. I. Infect. Disord.: Drug Targets
2006, 6, 85. (c) Winn, M.; Goss, R. J. M.; Kimura, K.; Bugg, T. D. H. Nat.
Prod. Rep. 2010, 27, 279.
In conclusion, a total synthesis of tunicamycin V has been
accomplished. The key to the synthesis was a diastereoselective
Mukaiyama aldol reaction followed by furan-oxidation to
construct an undecose skeleton, cyclic carbamate formation by
[3,3] sigmatropic rearrangement of a cyanate followed by
intramolecular entrapment of the resulting isocyanate, and
stereoselective construction of the 11′-β-1″-α-trehalose-type
linkage. Tunicamycin V is readily accessible via the longest linear
sequence of 24 synthetic steps from uridine and commercially
available simple materials, in an overall chemical yield of 3.9%.
The complex structure with tunicamycins binding to MraY from
Clostridium bolteae has recently been elucidated,26 and this could
be utilized for the development of analogues. Our strategy is
based on initial construction of tunicaminyluracil, which is
regarded as a key scaffold, playing an important role in mediating
a variety of biological activities. Alterations to the uridine moiety9
will be difficult by this strategy, but replacing the GlcNAc and the
lipid moieties in the last stage of the synthesis could provide a
range of new analogues of the tunicamycins. The synthesis and
biological evaluation of such analogues are currently underway.
(7) (a) Suami, T.; Sasai, H.; Matsuno, K. Chem. Lett. 1983, 12, 819.
(b) Suami, T.; Sasai, H.; Matsuno, K.; Suzuki, N.; Fukuda, Y.; Sakanaka,
O. Tetrahedron Lett. 1984, 25, 4533. (c) Suami, T.; Sasai, H.; Matsuno,
K.; Suzuki, N. Carbohydr. Res. 1985, 143, 85.
(8) Myers, A. G.; Gin, D. Y.; Rogers, D. H. J. Am. Chem. Soc. 1994, 116,
4697.
(9) Li, J.; Yu, B. Angew. Chem., Int. Ed. 2015, 54, 6618.
(10) Secrist, J. A., III; Wu, S. R. J. Org. Chem. 1979, 44, 1434.
(11) Danishefsky, S. J.; DeNinno, S. L.; Chen, S. H.; Boisvert, L.;
Barbachyn, M. J. Am. Chem. Soc. 1989, 111, 5810.
(12) Zamojski, A.; Ramza, J. Tetrahedron 1992, 48, 6123.
(13) Banaszek, A.; Karpiesiuk, W. Carbohydr. Res. 1997, 299, 245.
(14) Herrera, F. J. L.; Ortiz, L. M.; Sarabia, F. Org. Biomol. Chem. 2003,
1, 3716.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
(15) Ichikawa, S.; Matsuda, A. Nucleosides, Nucleotides Nucleic Acids
2004, 23, 239.
Detailed experimental procedures and characterization of
(16) Price, N. P. J.; Hartman, T. M.; Li, J.; Velpula, K. K.; Naumann, T.
A.; Guda, M. R.; Yu, B.; Bischoff, K. M. J. Antibiot. 2017, 70, 1070.
(17) (a) Achmatowicz, O., Jr.; Bukowski, P.; Szechner, B.;
Zwierzchowska, Z.; Zamojski, A. Tetrahedron 1971, 27, 1973. For
recent reviews, see: (b) Song, W.; Wang, S.; Tang, W. Chem. - Asian J.
2017, 12, 1027. (c) Ghosh, A. K.; Brindisi, M. RSC Adv. 2016, 6, 111564.
(18) (a) Saitoh, T.; Oyama, T.; Sakurai, K.; Niimura, Y.; Hinata, M.;
Horiguchi, Y.; Toda, J.; Sano, T. Chem. Pharm. Bull. 1996, 44, 956.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(b) Miguel
66, 540.
́
ez, J.; Boto, A.; Marín, R.; Díaz, M. Eur. J. Med. Chem. 2013,
Notes
(19) (a) Hanessian, S.; Kloss, J.; Sugawara, T. J. Am. Chem. Soc. 1986,
108, 2758. (b) Wang, R.; Steensma, D. H.; Takaoka, Y.; Yun, J. W.;
Kajimoto, T.; Wong, C. H. Bioorg. Med. Chem. 1997, 5, 661.
(20) (a) Evans, D. A.; Dart, M. J.; Duffy, J. L.; Yang, M. G. J. Am. Chem.
Soc. 1996, 118, 4322. (b) Kan, S. B. J.; Ng, K. K. H.; Paterson, I. Angew.
Chem., Int. Ed. 2013, 52, 9097. (c) Danishefsky, S. J.; DeNinno, M. P.;
Phillips, G. B.; Zelle, R. E.; Lartey, P. A. Tetrahedron 1986, 42, 2809.
(d) Chen, X.; Wiemer, D. F. J. Org. Chem. 2003, 68, 6597.
(21) (a) Chen, K.-M.; Hardtmann, G. E.; Prasad, K.; Repic, O.;
Shapiro, M. J. Tetrahedron Lett. 1987, 28, 155. (b) Evans, D. A.;
Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, 110, 3560.
(c) Ganta, A.; Shamshina, J. L.; Cafiero, L. R.; Snowden, T. S.
Tetrahedron 2012, 68, 5396.
(22) Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc. 1987, 109,
5551.
(23) Luche, J. L. J. Am. Chem. Soc. 1978, 100, 2226.
(24) Ichikawa, Y. Synlett 1991, 1991, 238. For review, see: Ichikawa, Y.
Synlett 2007, 2007, 2927.
(25) Kan, T.; Fukuyama, T. Chem. Commun. 2004, 353.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We wish to thank Ms. S. Oka (Center for Instrumental Analysis,
Hokkaido University) for measurement of the mass spectra. This
research was supported by JSPS Grant-in-Aid for Scientific
Research (B) (to S.I., Grant Number 16H05097) and by Astellas
Foundation for Research on Metabolic Disorders and partly
supported by Hokkaido University, Global Facility Center
(GFC), Pharma Science Open Unit (PSOU), funded by
MEXT under “Support Program for Implementation of New
Equipment Sharing System”, the Platform Project for Supporting
Drug Discovery and Life Science Research (Basis for Supporting
Innovative Drug Discovery and Life Science Research; BINDS)
from the Japan Agency for Medical Research and Development
(AMED).
(26) Hakulinen, J. K.; Hering, J.; Branden
M.; Johansson, P. Nat. Chem. Biol. 2017, 13, 265.
́
, G.; Chen, H.; Snijder, A.; Ek,
̈
D
Org. Lett. XXXX, XXX, XXX−XXX