Organic Letters
Letter
reacts with the palladium catalyst to generate an active HPdIIH
species. Next, 2-naphthol is hydrogenated to give ketone 2i-1,
regenerating the palladium catalyst. In the presence of K2S2O5,
intermediate 2i-1 performs the first amination with benzyl-
amine (1a) to give key intermediate 4ai-1. Then, the
dehydrogenation of 4ai-1 produces intermediate 4ai-2 and
releases the [HPdIIH] species (see path a). Finally, tautomer
4ai-3 undergoes a second amination to form the final product
4ai. Moreover, K2S2O5 is crucial for product formation (see
path b) because using K2S2O5 as the sole additive resulted in
only a small amount of amination product (see the SI). The
addition of K2S2O5 and H2O enables the formation of a
cyclohexenone intermediate from naphthol under these
conditions.
In summary, we have developed a simple, green, and highly
efficient direct mono/dual amination and cyclization using a
hydrogen-transfer strategy. Various phenols and amines were
evaluated using inexpensive HCO2NH4 as reductant in water,
providing green and mild access to secondary/tertiary
naphthylamines and chloroquine with different functionalities.
ACKNOWLEDGMENTS
■
Financial support by the “Climbing Program”Special Funds
(pdjh2020a0596), the Youth Talent Fund (No.
2018KQNCX272, 2018KQNCX273), Guangdong Basic and
Applied Basic Research Foundation (2019A1515110866,
2019A1515110522), Young Teacher Team of Wuyi University
(2019td06), and the Guangdong Provincial Department of
Education Fund (2019KZDXM052, 2017KZDXM085, and
2018KZDXM070).
REFERENCES
■
́
́
(1) (a) Arevalo, A. H.; Fernandez, H.; Silber, J. J.; Sereno, L.
Electrochim. Acta 1990, 35, 741−748. (b) Brito, R. M. M.; Vaz, W. L.
C. Anal. Biochem. 1986, 152, 250−255.
(2) Liu, H.; Zhou, Y.; Wang, J.; Xiong, C.; Xue, J.; Zhan, L.; Nie, Z.
Anal. Chem. 2018, 90, 729−736.
̈
(3) (a) Jonasson, J. M.; Ljung, R.; Talback, M.; Haglund, B.;
̀
̈
Gudbjornsdottir, S.; Steineck, G. Diabetologia 2009, 52, 1745−1754.
(b) Barnett, L. B.; Lewis, S. E. Mutat. Res., Rev. Mutat. Res. 2003, 543,
145−154.
(4) Choi, J.; Park, K.; Hong, J.; Park, J.; Kim, H. Mater. Trans. 2013,
54, 2291−2296.
ASSOCIATED CONTENT
(5) Díaz, T. G.; Acedo, M. I.; de la Pen
F. Analyst 1994, 119, 1151−1155.
a, A. M.; Pena, M. S.; Salinas,
̃ ̃
■
sı
* Supporting Information
(6) Ariaudo, A.; Favata, F.; De Nicolo, A.; Simiele, M.; Paglietti, L.;
Boglione, L.; Cardellino, C. S.; Carcieri, C.; Di Perri, G.; D’Avolio, A.
J. Pharm. Biomed. Anal. 2016, 125, 369−375.
The Supporting Information is available free of charge at
(7) (a) Suenaga, T.; Schutz, C.; Nakata, T. Tetrahedron Lett. 2003,
44, 5799−5801. (b) Tong, A.; Wu, Y.; Li, L. Talanta 1996, 43, 1429−
1436.
Experimental procedures and copies of NMR spectra for
(8) (a) Wang, Q.; Su, Y.; Li, L.; Huang, H. Chem. Soc. Rev. 2016, 45,
1257−1272. (b) Wang, Z.; Chen, X.; Xie, H.; Wang, D.; Huang, H.-
W.; Deng, G.-J. Org. Lett. 2018, 20, 5470−5473. (c) Kang, Q.-Q.; Wu,
W.; Li, Q.; Wei, W.-T. Green Chem. 2020, 22, 3060−3068.
(9) (a) Aubin, Y.; Fischmeister, C.; Thomas, C. M.; Renaud, J. L.
Chem. Soc. Rev. 2010, 39, 4130−4145. (b) Jiao, J.; Zhang, X.-R.;
Chang, N.-H.; Wang, J.; Wei, J.-F.; Shi, X.-Y.; Chen, Z.-G. J. Org.
Chem. 2011, 76 (4), 1180−1183. (c) Monnier, F.; Taillefer, M.
Angew. Chem., Int. Ed. 2009, 48, 6954−6971.
(10) (a) Li, C.; Zhao, X.; Wang, A.; Huber, G. W.; Zhang, T. Chem.
Rev. 2015, 115, 11559−11624. (b) Niwa, S.-i.; Eswaramoorthy, M.;
Nair, J.; Raj, A.; Itoh, N.; Shoji, H.; Namba, T.; Mizukami, F. Science
2002, 295, 105−107.
(11) (a) Irrgang, T.; Kempe, R. Chem. Rev. 2019, 119, 2524−2549.
(b) Ai, W.; Zhong, R.; Liu, X.; Liu, Q. Chem. Rev. 2019, 119, 2876−
2953. (c) Shao, Z.; Fu, S.; Wei, M.; Zhou, S.; Liu, Q. Angew. Chem.,
Int. Ed. 2016, 55, 14653−14657. (d) Deibl, N.; Kempe, R. J. Am.
Chem. Soc. 2016, 138, 10786−10789.
(12) (a) Chen, Z.; Zeng, H.; Girard, S. A.; Wang, F.; Chen, N.; Li,
C. J. Angew. Chem., Int. Ed. 2015, 54, 14487−14491. (b) Qiu, Z.; Lv,
L.; Li, J.; Li, C. C.; Li, C. J. Chem. Sci. 2019, 10, 4775−4781. (c) Qiu,
Z.; Li, J. S.; Li, C. J. Chem. Sci. 2017, 8, 6954−6958.
AUTHOR INFORMATION
■
Corresponding Authors
Zhongzhi Zhu − School of Biotechnology and Health Sciences,
Wuyi University, Jiangmen 529020, China;
Xiuwen Chen − School of Biotechnology and Health Sciences,
Authors
Wanyi Liang − School of Biotechnology and Health Sciences,
Wuyi University, Jiangmen 529020, China
Feng Xie − School of Biotechnology and Health Sciences, Wuyi
University, Jiangmen 529020, China
Zhihai Yang − School of Biotechnology and Health Sciences,
Wuyi University, Jiangmen 529020, China
Zheng Zeng − Affiliated Hospital of Guilin Medical University,
Guilin 541001, China
Chuanjiang Xia − School of Biotechnology and Health Sciences,
Wuyi University, Jiangmen 529020, China
Yibiao Li − School of Biotechnology and Health Sciences, Wuyi
University, Jiangmen 529020, China
(13) (a) Chen, Z.; Zeng, H.; Gong, H.; Wang, H.; Li, C. J. Chem. Sci.
2015, 6, 4174−4178. (b) Wang, Z.; Niu, J.; Zeng, H.; Li, C. J. Org.
Lett. 2019, 21, 7033−7037. (c) Zeng, H.; Cao, D.; Qiu, Z.; Li, C.-J.
Angew. Chem., Int. Ed. 2018, 57, 3752−3757. (d) Zeng, H.; Qiu, Z.;
Domínguez-Huerta, A.; Hearne, Z.; Chen, Z.; Li, C.-J. ACS Catal.
2017, 7, 510−519. (e) Dominguez-Huerta, A.; Perepichka, I.; Li, C.-J.
ChemSusChem 2019, 12, 2999−3002. (f) Qiu, Z.; Li, J.-S.; Li, C.-J.
Chem. Sci. 2017, 8, 6954−6958.
Complete contact information is available at:
(14) (a) Chen, X.; Zhao, H.; Chen, C.; Jiang, H.; Zhang, M. Chem.
Commun. 2018, 54, 9087−9090. (b) Chen, X.; Zhao, H.; Chen, C.;
Jiang, H.; Zhang, M. Angew. Chem., Int. Ed. 2017, 56, 14232−14236.
(c) Jiang, S.; Yang, Z.; Guo, Z.; Li, Y.; Chen, L.; Zhu, Z.; Chen, X.
Org. Biomol. Chem. 2019, 17, 7416−7424. (d) Xie, F.; Li, Y.; Chen,
X.; Chen, L.; Zhu, Z.; Li, B.; Huang, Y.; Zhang, K.; Zhang, M. Chem.
Commun. 2020, 56, 5997−6000.
Author Contributions
§W.L. and F.X. contributed equally to this work.
Notes
The authors declare no competing financial interest.
D
Org. Lett. XXXX, XXX, XXX−XXX