10.1002/anie.201901782
Angewandte Chemie International Edition
COMMUNICATION
[23]
[24]
[25]
[26]
M. W. Peters, P. Meinhold, A. Glieder, F. H. Arnold, J. Am. Chem. Soc.
2003, 125, 13442–13450.
Acknowledgements
R. Fasan, M. M. Chen, N. C. Crook, F. H. Arnold, Angew. Chem. Int. Ed.
2007, 46, 8414–8418; Angew. Chem. 2007, 119, 8566–8570
C. L. Crespi, V. P. Miller, D. M. Stresser, in Cytochrome P450 Part C,
Elsevier, 2002, pp. 276–284.
This work was funded by National Institutes of Health Awards
1RC1GM090980, F32GM125179 and F32GM129960, National
Science Foundation grants 1341894 and 1442724, and was part of the
U.S. Department of Energy (DOE) Joint BioEnergy Institute
Office of Biological and Environmental Research, through contract DE-
AC02-05CH11231 between Lawrence Berkeley National Laboratory
and the U.S. Department of Energy. We would like to thank Daniel Liu,
Joel Guenther, Pamela Peralta-Yahya, Benjamin Bowen, Carolyn
Bertozzi, and Judith Klinman for insightful discussions.
J. J. Cali, D. Ma, M. Sobol, D. J. Simpson, S. Frackman, T. D. Good, W.
J. Daily, D. Liu, Expert Opin Drug Metab Toxicol 2006, 2, 629–645.
W. L. Tang, Z. Li, H. Zhao, Chem. Commun. 2010, 46, 5461–5463.
T. Furuya, T. Nishi, D. Shibata, H. Suzuki, D. Ohta, K. Kino, Chem. Biol.
2008, 15, 563–572.
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
K. B. Lim, C. C. Ozbal, D. B. Kassel, Methods Mol. Biol. 2013, 987, 25–
50.
C. J. C. Whitehouse, S. G. Bell, L.-L. Wong, Chem. Soc. Rev. 2012, 41,
1218–1260.
R. Agudo, G.-D. Roiban, M. T. Reetz, Chembiochem 2012, 13, 1465–
1473.
Keywords: High-throughput screening • Mass spectrometry •
Enzyme assays • Biocatalysis • Cytochrome P450
J. H. Zhang, T. D. Chung, K. R. Oldenburg, J. Biomol. Screen. 1999, 4,
67–73.
[1]
[2]
[3]
M. T. Reetz, in Directed Evolution of Selective Enzymes: Catalysts for
Organic Chemistry and Biotechnology, Wiley-VCH Verlag GmbH & Co.
KGaA, Weinheim, Germany, 2016, pp. 27–57.
B. C. Zhu, G. Henderson, F. Chen, L. Maistrello, R. A. Laine, J. Chem.
Ecol. 2001, 27, 523–531.
M. A. Fraatz, R. G. Berger, H. Zorn, Appl. Microbiol. Biotechnol. 2009,
83, 35–41.
P. Jacques, M. Béchet, M. Bigan, D. Caly, G. Chataigné, F. Coutte, C.
Flahaut, E. Heuson, V. Leclère, D. Lecouturier, et al., Bioprocess Biosyst
Eng 2017, 40, 161–180.
R. J. Sowden, S. Yasmin, N. H. Rees, S. G. Bell, L.-L. Wong, Org.
Biomol. Chem. 2005, 3, 57–64.
R. Macarron, M. N. Banks, D. Bojanic, D. J. Burns, D. A. Cirovic, T.
Garyantes, D. V. S. Green, R. P. Hertzberg, W. P. Janzen, J. W. Paslay,
et al., Nat. Rev. Drug Discov. 2011, 10, 188–195.
N. J. Turner, Nat. Chem. Biol. 2009, 5, 567–573.
A. Seifert, S. Vomund, K. Grohmann, S. Kriening, V. B. Urlacher, S.
Laschat, J. Pleiss, Chembiochem 2009, 10, 853–861.
A. Seifert, J. Pleiss, Proteins 2009, 74, 1028–1035.
Q. S. Li, U. Schwaneberg, P. Fischer, R. D. Schmid, Chem. Eur. J 2000,
6, 1531–1536.
[37]
[38]
[4]
[5]
H. Sun, H. Zhang, E. L. Ang, H. Zhao, Bioorg. Med. Chem. 2018, 26,
1275–1284.
[39]
[40]
[41]
[42]
[43]
M. de Raad, T. de Rond, O. Rübel, J. D. Keasling, T. R. Northen, B. P.
Bowen, Anal. Chem. 2017, 89, 5818–5823.
[6]
[7]
M. S. Packer, D. R. Liu, Nat. Rev. Genet. 2015, 16, 379–394.
J. A. Dietrich, A. E. McKee, J. D. Keasling, Annu. Rev. Biochem. 2010,
79, 563–590.
K. Zhang, S. El Damaty, R. Fasan, J. Am. Chem. Soc. 2011, 133, 3242–
3245.
[8]
T. R. Northen, J.-C. Lee, L. Hoang, J. Raymond, D.-R. Hwang, S. M.
Yannone, C.-H. Wong, G. Siuzdak, Proc. Natl. Acad. Sci. USA 2008, 105,
3678–3683.
K. Zhang, B. M. Shafer, M. D. Demars, H. A. Stern, R. Fasan, J. Am.
Chem. Soc. 2012, 134, 18695–18704.
J. N. Kolev, K. M. O’Dwyer, C. T. Jordan, R. Fasan, ACS Chem. Biol.
2014, 9, 164–173.
[9]
T. de Rond, P. Peralta-Yahya, X. Cheng, T. R. Northen, J. D. Keasling,
Anal. Bioanal. Chem. 2013, 405, 4969–4973.
K. Deng, T. E. Takasuka, R. Heins, X. Cheng, L. F. Bergeman, J. Shi,
R. Aschenbrener, S. Deutsch, S. Singh, K. L. Sale, et al., ACS Chem.
Biol. 2014, 9, 1470–1479.
[10]
T. R. Northen, O. Yanes, M. T. Northen, D. Marrinucci, W. Uritboonthai,
J. Apon, S. L. Golledge, A. Nordström, G. Siuzdak, Nature 2007, 449,
1033–1036.
[44]
[45]
K. Y. Helal, A. Alamgir, E. J. Berns, M. Mrksich, J. Am. Chem. Soc. 2018,
140, 8060–8063.
[11]
[12]
K. Deng, K. W. George, W. Reindl, J. D. Keasling, P. D. Adams, T. S.
Lee, A. K. Singh, T. R. Northen, Rapid Commun. Mass Spectrom. 2012,
26, 611–615.
R. A. Heins, X. Cheng, S. Nath, K. Deng, B. P. Bowen, D. C. Chivian, S.
Datta, G. D. Friedland, P. D’Haeseleer, D. Wu, et al., ACS Chem. Biol.
2014, 9, 2082–2091.
W. Reindl, K. Deng, J. M. Gladden, G. Cheng, A. Wong, S. W. Singer,
S. Singh, J. C. Lee, C. H. Yao, T. C. Hazen, et al., Energy Environ. Sci.
2011, 4, 2884.
[46]
K. Deng, J. M. Guenther, J. Gao, B. P. Bowen, H. Tran, V. Reyes-Ortiz,
X. Cheng, N. Sathitsuksanoh, R. Heins, T. E. Takasuka, et al., Front.
Bioeng. Biotechnol. 2015, 3, 153.
[13]
[14]
T. de Rond, M. Danielewicz, T. Northen, Curr. Opin. Biotechnol. 2015,
31, 1–9.
[47]
[48]
Y. Chen, W. L. Tang, J. Mou, Z. Li, Angew. Chem. Int. Ed. 2010, 49,
5278–5283; Angew. Chem. 2010, 122, 5406–5411
A. Seifert, S. Vomund, K. Grohmann, S. Kriening, V. B. Urlacher, S.
Laschat, J. Pleiss, Chembiochem 2009, 10, 1426–1426.
V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew.
Chem. Int. Ed. 2002, 41, 2596–2599; Angew. Chem. 2002, 114, 2708-
2711
[15]
M. Greving, X. Cheng, W. Reindl, B. Bowen, K. Deng, K. Louie, M.
Nyman, J. Cohen, A. Singh, B. Simmons, et al., Anal. Bioanal. Chem.
2012, 403, 707–711.
[16]
[17]
L. M. Podust, D. H. Sherman, Nat Prod Rep 2012, 29, 1251–1266.
T. Niwa, N. Murayama, Y. Imagawa, H. Yamazaki, Drug Metab Rev
2015, 47, 89–110.
[18]
P. R. O. De Montellano, Cytochrome P450: Structure, Mechanism, and
Biochemistry, Springer Science & Business Media, 2005.
H. M. Girvan, A. W. Munro, Curr. Opin. Chem. Biol. 2016, 31, 136–145.
V. B. Urlacher, M. Girhard, Trends Biotechnol. 2012, 30, 26–36.
R. Fasan, ACS Catal. 2012, 2, 647–666.
[19]
[20]
[21]
[22]
E. Farinas, U. Schwaneberg, A. Glieder, F. Arnold, Adv Synth Catal
2001, 343, 601–606.
This article is protected by copyright. All rights reserved.