T. P. M. Goumans, K. van Alem, G. Lodder
FULL PAPER
Press, Boca Raton, 1995; c) T. Kitamura, chapter 85 in CRC
Handbook of Organic Photochemistry and Photobiology (Eds.:
W. M. Horspool, P.-S. Song), CRC Press, Boca Raton, 1995;
d) G. Lodder, J. Cornelisse, chapter 16 in The Chemistry of
Functional Groups: Supplement D2 (Eds.: S. Patai, Z. Rappo-
port), Wiley, Chichester, 1995.
a) E. S. Krijnen, G. Lodder, Tetrahedron Lett. 1993, 34, 729–
732; b) E. S. Krijnen, K. Van Alem, D. H. J. Van der Vlugt, H.
Zuilhof, G. Lodder, Manuscript in preparation.
K. Van Alem, G. Belder, G. Lodder, H. Zuilhof, J. Org. Chem.
2005, 70, 179–190.
the second portion of 3.4 g tBuOK in 70 mL of THF was added,
and the solution was warmed up to room temperature and stirred
overnight. The solution was filtered, and the precipitate washed
with petroleum ether. After evaporation of the solvent, the brown
solid was washed with 4 portions of 150 mL of petroleum ether.
The brown, oily residue after solvent removal was purified by silica
column chromatography with a mixture of ether in petroleum ether
[16]
1
as eluent (yield 18%). H NMR: δ = 3.24 (s, 1 H), 7.32 (m, 4 H),
7.64 (m, 2 H), 7.98 ppm (s, 1 H). 13C NMR: δ = 79.1, 83.1, 99.0,
128.3, 129.1, 129.2, 134.4, 138.1, 192.9 ppm. UV: λmax = 276 nm (ε
= 3.4ϫ104), λmax = 204 nm (ε = 2.2ϫ104). MS: m/z (rel. int.) =
208 (33), 206 (35), 127 (100), 77 (24).
[17]
[18]
[19]
E. S. Krijnen, H. Zuilhof, G. Lodder, J. Org. Chem. 1994, 59,
8139–8150.
The photochemistry of compounds 1 (R = CH3), 3 and 4 [R
= CN and C(H)=O], and 6 (R = CH=CH2) is also reported
in ref.[17,16,18], where the points of focus are the cation-derived
products.
In the presence of oxygen, next to c and d, other vinyl radical-
derived products are produced. See: J. M. Verbeek, M. Stapper,
E. S. Krijnen, J.-D. Van Loon, G. Lodder, S. Steenken, J. Phys.
Chem. 1994, 98, 9526–9536.
A trace amount of Ph–CϵC–F is produced via β-proton loss
from the vinylic cation.
a) L. A. Singer, N. P. Kong, Tetrahedron Lett. 1966, 7, 2089–
2094; b) L. A. Singer, N. P. Kong, J. Am. Chem. Soc. 1966, 88,
5213–5219; c) L. A. Singer, J. Chen, Tetrahedron Lett. 1969, 10,
4849–4854.
(Z)-2-Bromo-1-phenyl-1,3-butadiene (6a): To a cooled solution
(–40 °C) of 9 g [Ph3PCH3]I in THF, 14 mL of 1.6 BuLi in hex-
anes was added, and the solution was stirred for 50 min. After
dropwise addition of 4.5 g α-bromocinnamaldehyde in 30 mL THF,
the solution was warmed to room temperature and stirred for an
hour. The solution was filtered, and the precipitate washed with
petroleum ether. After evaporation of the solvent, the brown solid
was washed with 4 portions of 100 mL of petroleum ether. The
brown, oily residue after solvent removal was purified in a 38%
yield by silica column chromatography with a mixture of dichloro-
methane in petroleum ether as an eluent. The spectroscopic charac-
terization of 6a is reported in ref.[18]
[20]
[21]
[22]
[23]
[24]
a) G. T. Whitesides, C. P. Casey, J. K. Krieger, J. Am. Chem.
Soc. 1971, 93, 1379–1389; b) X.-Y. Jiao, W. G. Bentrude, J. Org.
Chem. 2003, 68, 3303–3306; c) A. B. Chopa, V. B. Dorn, M. A.
Badajoz, M. T. Lockhart, J. Org. Chem. 2004, 69, 3801–3805.
The C–H bond dissociation energies of ethene and methanol
are 108 and 92.6 kcal/mol, respectively, according to: K. W.
Egger, A. T. Cocks, Helv. Chim. Acta 1973, 56, 1516–1536.
J. A. Kampmeier, G. Chen, J. Am. Chem. Soc. 1965, 87, 2608–
2613.
A. C. Simmonett, S. E. Wheeler, H. F. Schaefer, J. Phys. Chem.
A 2004, 108, 1608–1615.
J. R. McCarthy, E. W. Huber, T.-B. Le, F. M. Laskovics, D. P.
Matthews, Tetrahedron 1996, 52, 45–58.
[1] G. Stork, N. H. Baine, J. Am. Chem. Soc. 1982, 104, 2321–
2323.
[2] a) S. Z. Zard, Radical Reactions in Organic Synthesis, Oxford
University Press, Oxford, 2003; b) P. Renaud, M. P. Sibi, Radi-
cals in Organic Synthesis, Wiley-VCH, Weinheim, 2001.
[3] a) D. P. Curran, N. A. Porter, B. Giese, Stereochemistry of Rad-
ical Reactions, VCH, Weinheim, 1995; b) B. Giese, Angew.
Chem. Int. Ed. Engl. 1989, 28, 969–980.
[4] a) L. A. Singer, in Selective Organic Transformations (Ed.: B. S.
Thyagarajan), Wiley-Interscience, New York, 1972, vol. 2, 239–
268; b) A. L. J. Beckwith, K. U. Ingold, in Rearrangements in
Ground and Excited States (Ed.: P. De Mayo), Academic Press,
New York, 1980, vol. 1, 280–310; c) O. Simumara, Top. Ste-
reochem. 1969, 4, 1–37; d) C. Galli, Z. Rappoport, Acc. Chem.
Res. 2003, 36, 580–587.
[5] P. R. Jenkins, M. C. R. Symons, S. E. Booth, C. J. Swain, Tetra-
hedron Lett. 1992, 33, 3543–3546.
[6] C. J. Rhodes, E. Roduner, J. Chem. Soc. Perkin Trans. 2 1990,
1729–1733 and references cited therein.
[7] a) L. Bonazzola, S. Feinstein, R. Marx, Mol. Phys. 1971, 22,
689–695; b) G. W. Neilson, M. C. R. Symons, J. Chem. Soc.
Perkin Trans. 2 1973, 1405–1410.
[8] H.-G. Korth, J. Lustztyk, K. U. Ingold, J. Chem. Soc. Perkin
Trans. 2 1990, 1997–2007.
[25]
[26]
[27]
[28]
[29]
R. M. Kopchik, J. A. Kampmeier, J. Am. Chem. Soc. 1968, 90,
6733–6741.
a) Singer
[4a,22]
and Metzger and Blumenstein[10] plot final con-
centration ratios instead of reaction rate ratios. Care must be
taken, however, to avoid free radical induced cis/trans isomer-
ization or, in the case of photochemical approaches, photo-
chemical isomerization; b) R. C. Neuman, G. D. Holmes, J.
Org. Chem. 1968, 33, 4317–4322.
The difference in activation enthalpy for an exothermic radical
scavenging will be mainly composed of the difference in steric
repulsion for cis and trans attack, which follows from the Bell–
Evans–Polanyi principle.
The vibrational contribution to the molecular partition func-
tion, and thus to the entropy is usually the largest. The normal
modes of a molecule, in turn, are determined by symmetry; cf.,
for instance, P. W. Atkins, Physical Chemistry, Oxford Univer-
sity Press, Oxford, 1995, 5th edition, chapters 16, 19 and 20.
L. Letendre, H.-L. Dai, J. Phys. Chem. A 2002, 106, 12035–
12040.
a) R. C. Bingham, M. J. S. Dewar, J. Am. Chem. Soc. 1973, 95,
7180–7182; b) R. C. Bingham, M. J. S. Dewar, J. Am. Chem.
Soc. 1973, 95, 7182–7183.
Irradiation of 5a yields Ph–CϵC–CϵC–H and Ph–
C(H)=C=C=C(H)–Br (tentative structure), produced from the
vinylic cation by β-proton loss and 1,3-bromide shift, respec-
tively.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven,
K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tom-
asi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,
[30]
[31]
[9] O. Ito, O. Ryoichi, M. Matsuda, J. Am. Chem. Soc. 1982, 104,
3934–3937.
[10] J. O. Metzger, M. Blumenstein, Chem. Ber. 1993, 126, 2493–
2499.
[11] M. Ohno, K. Ishizaki, S. Eguchi, J. Org. Chem. 1988, 53, 1285–
1288.
[12] M. Guerra, Res. Chem. Intermed. 1996, 22, 369–379.
[13] C. Galli, A. Guarnieri, H. F. Koch, P. Mencarelli, Z. Rappo-
port, J. Org. Chem. 1997, 62, 4072–4077. The vinyl radicals
with α-substituents H, Cl and F were also calculated at the
higher level B3LYP/6-311G(2d,2p).
[14] a) P. M. Mayer, C. J. Parkinson, D. M. Smith, L. Radom, J.
Chem. Phys. 1998, 108, 604–615; b) C. J. Parkinson, P. M.
Mayer, L. Radom, Theor. Chem. Acc. 1999, 102, 92–96.
[15] a) G. Lodder, chapter 8 in Dicoordinated Carbocations (Eds.:
Z. Rappoport, P. J. Stang), Wiley, West Sussex, 1997; b) P. J.
Kropp, chapter 84 in CRC Handbook of Organic Photochemis-
try and Photobiology (Eds.: W. M. Horspool, P.-S. Song), CRC
[32]
[33]
[34]
[35]
442
www.eurjoc.org
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2008, 435–443