3128 J ournal of Medicinal Chemistry, 1997, Vol. 40, No. 19
Acher et al.
(9) Nakanishi, S. Metabotropic glutamate receptors: synaptic trans-
mission, modulation, and plasticity. Neuron 1994, 13, 1031-
1037.
(C-1), 52.7 and 52.0 (C-3, C-4), 45.2 (3 × OCH3), 39.6 (C-2,
C-5), 28.2 [C(CH3)3].
(1R,3R,4S)-Tr im eth yl N-t-Boc-1-a m in ocyclop en ta n e-
1,3,4-tr ica r boxylic Ester (28). ACPT-II (19), 12.3 mg, 0.061
mmol) was esterified, N-protected (3 weeks), and purified as
described above to afford 28 (11.0 mg, 0.031 mmol) in 54%
overall yield: TLC (CH2Cl2/MeOH, 95:5) Rf 0.27; 1H NMR
(CDCl3) δ 5.21 (br s, 1H, NH), 3.71 (s, 3H, OCH3), 3.66 (s, 6H,
2 × OCH3), 3.26 (m, 2H, H-3, H-4), 2.65 and 2.64 (2 dd, 2H, J
) 6.0, 14.0 Hz, H-2, H-5), 2.29 (br dd, 2H, J ) 6.0, 14.0 Hz,
H-2, H-5), 1.39 [s, 9H, C(CH3)3]; 13C NMR (CDCl3) δ 174.3 and
173.4 (CO), 155.0 (NCO), 80.2 [C(CH3)3], 64.3 (C-1), 52.7 and
52.0 (C-3, C-4), 45.5 (3 × OCH3), 39.7 (C-2, C-5), 28.2 [C(CH3)3].
Biologica l Assa ys. Cu ltu r e a n d Tr a n sfection of HEK
293 Cells. HEK 293 cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM, Gibco BRL) supplemented with 10%
fetal calf serum and transfected by electroporation as previ-
ously described.18 Electroporation was carried out in a total
volume of 300 µL with 10 µg of carrier DNA, plasmid DNA
containing mGluR1a (0.3 µg), mGluR2 (2 µg), or mGluR4a (5
µg), and 10 million cells. To allow mGluR2 and mGluR4a to
activate PLC, an effect easier to measure than the inhibition
of cAMP production, these receptors were co-expressed with
the chimeric G-proteins Gqo5 and Gqi9 as previously de-
scribed.18 We previously reported that the pharmacological
profiles of these two receptors was identical to that character-
ized by measuring the inhibition of cAMP formation.
Deter m in a tion of In ositol P h osp h a tes (IP ) Accu m u la -
tion . Determination of IP accumulation in transfected cells
was performed as previously described after labeling the cells
overnight with [3H]myoinositol (23.4 Ci/mol, NEN, France).18
The stimulation was conducted for 30 min in a medium
containing 10 mM LiCl and the agonist at the indicated
concentration. The basal IP formation was determined after
30 min incubation in the presence of 10 mM LiCl and the Glu-
degrading enzyme glutamate pyruvate transaminase (1 unit/
mL) and 2 mM pyruvate to avoid the possible action of Glu
released from the cells. Results are expressed as the amount
of IP produced over the radioactivity present in the mem-
branes. The dose-response curves were fitted using the
equation y ) (ymax - ymin)/[1 + (x/EC50)n] + ymin and the
kaleidagraph program.
(10) Pin, J .-P.; Duvoisin, R. The metabotropic glutamate receptors:
Structure and functions. Neuropharmacology 1995, 34, 1-26.
(11) Conn, P.; Pin, J .-P. Pharmacology and functions of metabotropic
glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 1997, 37,
205-237.
(12) Kno¨pfel, T.; Kuhn, R.; Allgeier, H. Metabotropic glutamate
receptors: novel targets for drug development. J . Med. Chem.
1995, 38, 1417-1426.
(13) Nicoletti, F.; Bruno, V.; Copani, A.; Casabona, G.; Knopfel, T.
Metabotropic glutamate receptors: A new target for the therapy
of neurodegenerative disorders? Trends Neurosci. 1996, 19, 267-
271.
(14) Riedel, G. Function of metabotropic glutamate receptors in
learning and memory. Trends Neurosci. 1996, 19, 219-224.
(15) Manzoni, O.; Fagni, L.; Pin, J . P.; Rassendren, F.; Poulat, F.;
Sladeczek, F.; Bockaert, J . (Trans)-1-amino-cyclopentyl-1,3-
dicarboxylate stimulates quisqualate phosphoinositide-coupled
receptors but not ionotropic glutamate receptors in striatal
neurons and Xenopus oocytes. Mol. Pharmacol. 1990, 38, 1-6.
(16) Palmer, E.; Monaghan, D. T.; Cotman, C. W. trans-ACPD, a
selective agonist of the phosphoinositide coupled excitatory
amino acid receptor. Eur. J . Pharmacol. 1989, 166, 585-587.
(17) J oly, C.; Gomeza, J .; Brabet, I.; Curry, K.; Bockaert, J .; Pin, J .-
P. Molecular, functional and pharmacological characterization
of the metabotropic glutamate receptor type 5 splice variants:
comparison with mGluR1. J . Neurosci. 1995, 15, 3970-3981.
(18) Gomeza, J .; Mary, S.; Brabet, I.; Parmentier, M.-L.; Restituito,
S.; Bockaert, J .; Pin, J .-P. Coupling of mGluR2 and mGluR4 to
GR15, GR16 and chimeric GRq/i proteins: characterization of
new antagonists. Mol. Pharmacol. 1996, 50, 923-930.
(19) Roberts, P. J . Pharmacological tools for the investigation of
metabotropic glutamate receptors (mGluRs): Phenylglycine
derivatives and other selective antagonistssan update. Neurop-
harmacology 1995, 34, 813-819.
(20) Monn, J . A.; Valli, M. J .; Massey, S. M.; Wright, R. A.; Salhoff,
C. R.; J ohnson, B. G.; Howe, T.; Alt, C. A.; Rhodes, G. A.; Robey,
R. L.; Griffey, K. R.; Tizzano, J . P.; Kallman, M. J .; Helton, D.
R.; Schoepp, D. D. Design, synthesis, and pharmacological
characterization of (+)-2-aminobicyclo[3.1.0]hexane-2,6-dicar-
boxylic acid (LY354740): a potent, selective, and orally active
group 2 metabotropic glutamate receptor agonist possessing
anticonvulsant and anxiolytic properties. J . Med. Chem. 1997,
40, 528-537.
(21) Ornstein, P. L.; Bleisch, T. J .; Arnold, M. B.; Wright, R. A.;
J ohnson, B. G.; Tizzano, J . P.; Helton, D. R.; Kallman, M. J .;
Schoepp, D. D. Novel antagonists for metabotropic glutamate
receptors. Neuropharmacology 1996, 35, A22.
(22) Brabet, I.; Mary, S.; Bockaert, J .; Pin, J .-P. Phenylglycine
derivatives discriminate between mGluR1 and mGluR5 medi-
ated responses. Neuropharmacology 1995, 34, 895-903.
(23) Ito, I.; Kohda, A.; Tanabe, S.; Hirose, E.; Hayashi, M.; Mitsunaga,
S.; Sugiyama, H. 3,5-Dihydroxyphenylglycine: a potent agonist
of metabotropic glutamate receptors. NeuroReport 1992, 3,
1013-1016.
Cu ltu r e a n d Recor d in gs of Cer ebella r Gr a n u le Neu -
r on s. Cerebellar granule cells were cultured from 7 days old
mice as previously described.45 Neurons were recorded using
the patch-clamp technique in the whole cell configuration, and
drugs were applied using a fast application technique as
previously described.15
(24) Schoepp, D. D.; Goldsworthy, J .; J ohnson, B. G.; Salhoff, C. R.;
Baker, S. R. 3,5-Dihydroxyphenylglycine is a highly selective
agonist for phosphoinositide-linked metabotropic glutamate
receptors in the rat hippocampus. J . Neurochem. 1994, 63, 769-
772.
(25) Hayashi, Y.; Momiyama, A.; Takahashi, T.; Ohishi, H.; Ogawa-
Meguro, R.; Shigemoto, R.; Mizuno, N.; Nakanishi, S. Role of a
metabotropic glutamate receptor in synaptic modulation in the
accessory olfactory bulb. Nature 1993, 366, 687-690.
(26) Monn, J . A.; Valli, M. J .; J ohnson, B. G.; Salhoff, C. R.; Wright,
R. A.; Howe, T.; Bond, A.; Lodge, D.; Spangle, L. A.; Paschal, J .
W.; Campbell, J . B.; Griffey, K.; Tizzano, J . P.; Schoepp, D. D.
Synthesis of the four Isomers of 4-Aminopyrrolidine-
2,4-dicarboxylate: Identification of a Potent, Highly Selective,
and Systemically-Active Agonist for Metabotropic Glutamate
Receptors Negatively Coupled to Adenylate Cyclase. J . Med.
Chem. 1996, 39, 2990-3000.
(27) Anand, H.; Roberts, P. J .; Badman, G.; Dixon, A. J .; Collins, J .
F. Novel kainic acid analogues: effects on cyclic GMP content
of adult rat cerebellar slices. Biochem. Pharmacol. 1986, 35,
409-415.
(28) Allan, R. D.; Hanrahan, J . R.; Hambley, T. W.; J ohnston, G. A.
R.; Mewet, K. N.; Mitrovic, A. D. Synthesis and activity of a
potent N-methyl-D-aspartic acid agonist, trans-1-aminocyclobu-
tane-1,3-dicarboxylic acid, and related phosphonic and carboxylic
acids. J . Med. Chem. 1990, 33, 2905-2915.
Ack n ow led gm en t. We are indebted to Odile Con-
vert (Universite´ Pierre et Marie Curie, Paris) for NOE
experiments and their interpretation. This work was
supported by grants from the French Ministry of
Education, Research and Professional Insertion (ACC-
SV5, no. 9505077), the European community Biomed2
(BMH4-CT96-0228) and Biotech2 (BIO4-CT96-0049)
programs, and the Fondation pour la Recherche Me´di-
cale.
Refer en ces
(1) Bliss, T. V. P.; Collingridge, G. A synaptic model of memory:
long-term potentiation in the hippocampus. Nature 1993, 361,
31-39.
(2) Linden, D. J . Long-term synaptic depression in the mammalian
brain. Neuron 1994, 12, 457-472.
(3) Siegelbaum, S. A.; Kandel, E. R. Learning related synaptic
plasticity: LTP and LTD. Curr. Opin. Neurobiol. 1991, 1, 113-
120.
(4) Ito, M. Long-term depression. Annu. Rev. Neurosci. 1989, 12,
85-102.
(5) Choi, D. W. Cerebral hypoxia: some new approaches and
unanswered questions. J . Neurosci. 1990, 10, 2493-2501.
(6) Choi, D. W. Glutamate neurotoxicity and diseases of the nervous
system. Neuron 1988, 1, 623-634.
(7) Nakanishi, S. Molecular diversity of glutamate receptors and
implications for brain function. Science 1992, 258, 597-603.
(8) Hollmann, M.; Heinemann, S. Cloned glutamate receptors.
Annu. Rev. Neurosci. 1994, 17, 31-108.
(29) Gaoni, Y.; Chapman, A. G.; Parvez, N.; Pook, P. C.-K.; J ane, D.
E.; Watkins, J . C. Synthesis, NMDA receptor antagonist activity,
and anticonvulsant action of 1-aminocyclobutanecarboxylic acid
derivatives. J . Med. Chem. 1994, 37, 4288-4296.
(30) Allan, R. D.; Apostopoulos, C.; Hambley, T. W. The synthesis
and structure of a cyclobutane analogue of glutamic acid with
an acetic acid side chain. Aust. J . Chem. 1995, 48, 919-928.