Communication
ChemComm
3 (a) X. Xu, C. Li, M. Xiong, Z. Tao and Y. Pan, Chem. Commun., 2017,
53, 6219; (b) B. Biswas and D. A. Singleton, J. Am. Chem. Soc., 2015,
137, 14244; (c) Z. Song, Y. Wu, T. Xin, C. Jin, X. Wen, H. Sun and
Q.-L. Xu, Chem. Commun., 2016, 52, 6079.
Eur. J. Org. Chem., 2015, 7235; (e) K. J. Hock, A. Knorrscheidt,
R. Hommelsheim, J. Ho, M. J. Weissenborn and R. M. Koenigs,
ChemRxiv, 2018, DOI: chemrxiv.6011096.v1.
13 (a) T. Curtius, Ber. Dtsch. Chem. Ges., 1898, 31, 2489; (b) D. D.
Phillips and W. C. Champion, J. Am. Chem. Soc., 1956, 78, 5452.
4 For selected articles, see: (a) H. Yorimitsu, Chem. Rec., 2017,
17, 1156; (b) D. Kaiser, L. F. Veiros and N. Maulide, Adv. Synth. 14 References on our work: (a) K. J. Hock and R. M. Koenigs, Chem. –
Catal., 2017, 359, 64; (c) T. Tomakinian, R. Guillot, C. Kouklovsky
and G. Vincent, Chem. Commun., 2016, 52, 5443; (d) H.-Y. Wang and
L. L. Anderson, Org. Lett., 2013, 15, 3362; (e) M. O. Kitching, T. E.
Hurst and V. Snieckus, Angew. Chem., Int. Ed., 2012, 51, 2925;
( f ) W. H. Moser, L. Sun and J. C. Huffman, Org. Lett., 2001,
3, 3389; (g) L. E. Overman, S. Tsuboi, J. P. Roos and G. F. Taylor,
J. Am. Chem. Soc., 1980, 102, 747.
5 (a) Z. He, H. J. Shrives, J. A. Fernandez-Salas, A. Abengozar,
J. Neufeld, K. Yang, A. P. Pulis and D. J. Procter, Angew. Chem.,
Int. Ed., 2018, 57, 5759; (b) M. Siauciulis, S. Sapmaz, A. P. Pulis and
D. J. Procter, Chem. Sci., 2018, 9, 754; (c) T. Yanagi, S. Otsuka,
Y. Kasuga, K. Fujimoto, K. Murakami, K. Nogi, H. Yorimitsu and
Eur. J., 2018, 24, 10571; (b) L. Mertens, K. J. Hock and R. M. Koenigs,
Chem. – Eur. J., 2016, 22, 9542; (c) K. J. Hock, L. Mertens, F. K. Metze,
C. Schmittmann and R. M. Koenigs, Green Chem., 2017, 19, 905;
(d) K. J. Hock, L. Mertens and R. M. Koenigs, Chem. Commun., 2016,
52, 13783; (e) K. J. Hock, R. Hommelsheim, L. Mertens, J. Ho, T. V.
Nguyen and R. M. Koenigs, J. Org. Chem., 2017, 82, 8220–8227;
( f ) R. Hommelsheim, K. J. Hock, C. Schumacher, M. A. Hussein,
T. V. Nguyen and R. M. Koenigs, Chem. Commun., 2018, 54, 11439;
(g) U. P. N. Tran, K. J. Hock, C. Gordon, R. M. Koenigs and T. V.
Nguyen, Chem. Commun., 2017, 53, 4950; (h) R. Hommelsheim,
Y. Guo, Z. Yang, C. Empel and R. M. Koenigs, Angew. Chem., Int.
Ed., 2018, DOI: 10.1002/anie.201811991.
A. Osuka, J. Am. Chem. Soc., 2016, 138, 14582; (d) A. J. Eberhart and 15 Selected review articles on iron catalysis: (a) S.-F. Zhu and Q.-L.
¨
D. J. Procter, Angew. Chem., Int. Ed., 2013, 52, 4008.
6 V. A. Vil, G. dos Passos Gomes, O. V. Bityukov, K. A. Lyssenko, G. I.
Nikishin, I. V. Alabugin and A. O. Terent’ev, Angew. Chem., Int. Ed.,
2018, 57, 3372.
7 Z.-W. Zhou, F.-C. Jia, C. Xu, S.-F. Jiang, Y.-D. Wu and A.-X. Wu,
Chem. Commun., 2017, 53, 1056.
Zhou, Natl. Sci. Rev., 2014, 1, 580; (b) H.-J. Knolker and I. Bauer,
Chem. Rev., 2015, 115, 3170; (c) R. Shang, L. Ilies and E. Nakamura,
Chem. Rev., 2017, 117, 9086; (d) L.-X. Liu, Curr. Org. Chem., 2010,
14, 1099; (e) C. Bolm, J. Legros, J. LePaih and L. Zani, Chem. Rev.,
2004, 104, 6217; ( f ) B. Plietker, Iron Catalysis in Organic Chemistry:
Reactions and applications, Wiley-VCH, Weinheim, 2nd edn, 2008;
(g) W. M. Czaplik, M. Mayer, J. Cvengros and A. Jacobi von Wangelin,
ChemSusChem, 2009, 2, 396.
8 V. Z. Shirinian, A. G. Lvov, D. V. Lonshakov, A. V. Yadykov, V. V.
Kachala and M. M. Krayushkin, Tetrahedron Lett., 2018, 59, 243.
9 (a) C. J. Moody and R. J. Taylor, Tetrahedron Lett., 1988, 29, 6005; 16 For a functional group double exchange reaction using palladium
´
(b) L. Bruche, L. Garanti and G. Zecchi, J. Chem. Soc., Perkin Trans. 1,
1981, 2245.
catalysts, see: Y. H. Lee and B. Morandi, Nat. Chem., 2018, 10, 1016.
17 While the interception of the rearrangement process in the case of
small linear aliphatic groups is likely to proceed via an SN2 process,
the observation from benzyl cyclohexyl thioethers (vide supra) can be
best rationalized by an intramolecular elimination reaction and the
formation of cyclohexene as a by-product.
10 For selected references, see: (a) B. Morandi and E. M. Carreira,
Angew. Chem., Int. Ed., 2010, 49, 938; (b) P. K. Mykhailiu, Eur. J. Org.
Chem., 2015, 7235; (c) P. K. Mykhailiuk, Angew. Chem., Int. Ed., 2015,
54, 6558; (d) B. Morandi and E. M. Carreira, Angew. Chem., Int. Ed.,
2010, 49, 4294; (e) B. Morandi and E. M. Carreira, Science, 2012,
335, 1471.
11 (a) K. J. Hock, R. Spitzner and R. M. Koenigs, Green Chem., 2017,
19, 2118; (b) C. Empel, K. J. Hock and R. M. Koenigs, Org. Biomol.
Chem., 2018, 16, 7129.
12 For selected articles, see: (a) C. V. Galliford and K. A. Scheidt, J. Org. 18 The substitution reaction might also take place via a reaction with
Chem., 2007, 72, 1811–1813; (b) Y. Ferrand, P. Le Maux and
G. Simmoneaux, Tetrahedron: Asymmetry, 2005, 16, 3829–3836;
water molecules from solvent, yet benzyl alcohol was not observed
in NMR and GC-MS.
(c) F.-X. Felpin, E. Doris, A. Wagner, A. Valleix, B. Rousseau and 19 In the presence of NaBr and NaI the yield of 6a is reduced to 53%
C. Mioskowski, J. Org. Chem., 2001, 66, 305; (d) P. K. Mykhailiuk,
and 37%, respectively.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 338--341 | 341