Table 3 Macroscopic and rotamer-specific protonation constants of
histamine
3 D. G. Cooper, R. C. Young, G. J. Durant and C. R. Ganellin,
in Comprehensive Medicinal Chemistry, Pergamon Press, Oxford,
1990, vol. 3, p. 323.
log K1 = 10.16
log K2 = 6.35
4 B. Noszál, V. Scheller-Krattiger and R. B. Martin, J. Am. Chem.
Soc., 1982, 104, 1078.
5 T. B. Paiva, M. Tominaga and A. C. M. Paiva, J. Med. Chem., 1970,
13, 689.
6 P. G. Daniele, C. Rigano and S. Sammartano, Talanta, 1985, 32, 78.
7 B. Noszál and D. L. Rabenstein, J. Phys. Chem., 1991, 95, 4761.
8 C. R. Ganellin, J. Pharm. Pharmacol., 1973, 25, 787.
9 J. D. Roberts, C. Yu, C. Flanagan and T. Birdseye, J. Am. Chem.
Soc., 1982, 104, 3945.
log K1t = 10.12
log K1g = 10.18
log K2t = 6.47
log K2g = 6.26
where K1t quantifies the t-rotamer-specific amino basicity of
histamine.
Rotamer concentrations can be expressed with macroscopic
concentrations and rotamer mole fractions:
10 M. V. Veidis, G. J. Palenik, R. Schaffrin and J. Trotter, J. Chem. Soc.
A, 1969, 2659.
11 J. J. Bonett and J. A. Ibers, J. Am. Chem. Soc., 1973, 95, 4829.
12 K. Prout, S. R. Critchley and C. R. Ganellin, Acta Crystallogr.,
Sect. B, 1974, 30, 2884.
[t] = [His]αt
(9)
13 C. R. Ganellin, E. S. Pepper, G. N. J. Port and N. G. Richards,
J. Med. Chem., 1973, 16, 610.
[Htϩ] = [HHisϩ]αHt
(10)
ϩ
14 N. S. Ham, A. F. Casy and R. R. Ison, J. Med. Chem., 1973, 16, 470.
15 L. B. Kier, J. Med. Chem., 1968, 11, 441.
16 T. Natsui and O. Kikuchi, J. Mol. Struct., 1991, 251, 335.
17 G. S. Rao, S. Mahjan and R. K. Miskra, Int. J. Quantum Chem.
Quantum Biol. Symp., 1983, 10, 5.
18 P. I. Nagy, G. J. Durant, W. P. Hoss and D. A. Smith, J. Am. Chem.
Soc., 1994, 116, 4898.
Introducing eqns. (9)–(10) into eqn. (8) yields:
(11)
19 G. A. Worth and W. A. Richards, J. Am. Chem. Soc., 1994, 116, 239.
20 M. D. De Backer, W. Gommeren, H. Moereels, G. Nobels,
P. Van Gompel, J. E. Leysen and W. H. M. L. Luyten, Biochem.
Biophys. Res. Commun., 1993, 197, 1601.
21 I. Gantz, G. Munzert, T. Tashiro, M. Schäffer, L. Wang, J. DelValle
and T. Yamada, Biochem. Biophys. Res. Commun., 1991, 178,
1386.
22 T. W. Lovenberg, B. L. Roland, S. J. Wilson, X. Jiang, J. Pyati,
A. Huvar, M. R. Jackson and M. G. Erlander, Mol. Pharmacol.,
1999, 55, 615.
23 C. Liu, X. Ma, X. Jiang, S. J. Wilson, C. L. Hofstra, J. Belvitt,
J. Pyati, X. Li, W. Chai, N. Carruthers and T. W. Lovenberg,
Mol. Pharmacol., 2001, 59, 420.
24 C. R. Ganellin, G. N. J. Port and W. G. Richards, J. Med. Chem.,
1973, 16, 616.
25 C. R. Ganellin, J. Med. Chem., 1973, 16, 620.
26 G. J. Durant, C. R. Ganellin and M. E. Parsons, J. Med. Chem.,
1975, 18, 905.
27 Y. G. Smeyers, F. J. Romero-Sánchez and A. Hernández-Laguna,
J. Mol. Struct. (THEOCHEM), 1985, 123, 431.
28 W. Sippl, H. Stark and H. D. Höltje, Quant. Struct. Act. Relat.,
1995, 14, 121.
29 N.-Y. Shih, A. T. Lupo Jr., R. Aslanian, S. Orlando, J. J. Piwinski,
M. J. Green, A. K. Ganguly, M. A. Clark, S. Tozzi, W. Kreutner and
J. A. Hey, J. Med. Chem., 1995, 38, 1593.
Logarithmic values of the macroscopic and rotamer-specific
protonation constants are collected in Table 3. Although
macroscopic constants, in principle, cannot be assigned to
specific sites, constants with subscripts 1 and 2 practically
purely characterise the basicity of the amino and imidazole
groups, respectively.
The rotamer-specific amino protonation constants differ
insignificantly from each other and the respective bulk con-
stant. The imidazole protonation exerts a more significant effect
on the rotamer populations. The low log K2g value shows that
uptake of a second proton in the gauche rotamer brings about
breakdown of the monocationic hydrogen bond, and this pro-
cess needs a relatively high hydrogen ion concentration. The
evaluated log K2t value mainly reflects the basicity of the imid-
azole moiety, which is undisturbed by intramolecular hydrogen
bonds, but is certainly influenced by the skeleton-mediated
electron-withdrawing effect of the adjacent ammonium site.
The above statements support our observations on the amino
basicity of rotamers. The higher log K1g value indicates that
the imidazole group promotes the amino protonation by intra-
molecular, inter-moiety hydrogen bond formation in gauche
amino-imidazole positions only.
30 R. J. Sundberg and R. B. Martin, Chem. Rev., 1974, 74, 471.
31 D. L. Rabenstein, P. Bratt and J. Peng, Biochemistry, 1998, 37,
14121.
32 T. C. McMorris, R. G. Chavez and P. A. Patil, J. Chem. Soc., Perkin
Trans. 1, 1996, 3, 295.
Acknowledgements
33 F. Kundell, Ber., 1901, 34, 637.
This work has been supported by the grants MKM FKFP
1126/1997, NjM 447/96, and SE 155/2000.
34 J. W. Conforth and H. T. Huang, J. Chem. Soc., 1948, 1960.
35 S. Fujiwara, H. Ishizuka and S. Fudano, Chem. Lett., 1974, 1281.
36 R. B. Martin, J. Phys. Chem., 1979, 83, 2404.
37 B. Noszál, W. Guo and D. L. Rabenstein, J. Phys. Chem., 1991, 95,
9609.
References
1 L. Pearce, Agent Actions, 1991, 33, 4.
38 C. Altona, R. Francke, R. de Haan, J. H. Ippel, G. J. Daalmans,
A. J. A. W. Hoekzema and J. van Wijk, Magn. Reson. Chem., 1994,
32, 670.
2 S. J. Hill, C. R. Ganellin, H. Timmerman, J. C. Schwartz,
N. P. Shankley, J. M. Young, W. Schunack, R. Levi and H. L. Haas,
Pharmacol. Rev., 1997, 49, 253.
39 B. Noszál and M. Kraszni, J. Phys. Chem. B, 2002, 106, 1066.
J. Chem. Soc., Perkin Trans. 2, 2002, 914–917
917