92
D. Batovska et al. / European Journal of Medicinal Chemistry 42 (2007) 87e92
1
(22). H NMR (DMSO-d6, 250 MHz): d 7.77 (d, J ¼ 15.5 Hz,
1H, H-b), 7.72 (s, 4H, H-2, H-3, H-5, H-6), 7.54 (d,
J ¼ 15.5 Hz, 1H, H-a), 7.27 (s, 2H, H-20, H-60), 3.95 (s, 6H,
CH3O), 3.94 (s, 3H, CH3O). 13C NMR (DMSO-d6,
250 MHz): d 188.4 (C]O), 153.2 (C-30, C-50), 143.0 (C-1),
141.9 (C-b), 139.2 (C-40), 132.8 (C-10), 132.7 (C-3, C-5),
129.6 (C-2, C-6), 124.8 (C-a), 118.3 (C^N), 113.5 (C-4),
106.3 (C-20, C-60), 61.0 (CH3O), 56.4 (2 ꢄ CH3O). Anal. for
C19H17NO4. Calc. (%): C, 70.58; H, 5.30; N, 4.33. Found
(%): C, 70.56; H, 5.51; N, 4.04.
diameter. One hundred microliter of each sample, dissolved
in 96% EtOH (5000 mg/ml) was added to the appropriate
well. For pre-diffusion the Petri dishes were placed at 4 ꢁC
for 2 h. The antifungal activity was estimated by the diameter
of inhibitory zones in the agar layer after incubation at 37 ꢁC
for 48 h. Control experiments were carried out with the pure
solvent.
4.2.2. Measurement of MIC
MIC was determined by serial dilution of each chalcone
(0.0e2000 mg/ml) in test tubes using meat-pepton broth.
Each test tube was inoculated with fungal suspension contain-
ing 105 cells/ml and incubated at 37 ꢁC for 24 h. The lowest
dilution that visibly showed no growth compared to drug-
free broth inoculated with microbial suspension was consid-
ered the MIC. For more precise detection, tubes that showed
no visible growth were streaked on fresh meat-pepton agar
plates, incubated at 37 ꢁC for 24 h and checked for growth.
4.1.3.4. 3,30,40,50-Tetramethoxychalcone (42). Yield 78%, yel-
low crystals, m.p. 65e67 ꢁC (MeOH). UV (MeOH): 320 nm.
IR (KBr): 1650 (C]O), 1571 (C]C), 1329 (CeOeAr),
1214 (CeO) cmꢂ1. MS m/z [Mþ] 328 (100), [M ꢂ 15]þ 313
(41), [M ꢂ 31]þ 297 (46), [M ꢂ 43]þ 285 (22), [M ꢂ 133]þ
195 (27), [M ꢂ 167]þ 161 (16), [M ꢂ 195]þ 133 (10). 1H
NMR (CDCl3, 250 MHz): d 7.78 (d, J ¼ 15.5 Hz, 1H, H-b),
7.46 (d, J ¼ 15.5 Hz, 1H, H-a), 7.35 (t, J ¼ 8.0 Hz, 1H, H-
5), 7.22e7.27 (m, 3H, H-20, H-60, H-6), 7.17 (t, J ¼ 2.0 Hz,
1H, H-2), 6.97 (dd, 1 H, J1 ¼ 2.8 Hz, J2 ¼ 8.0 Hz, H-4), 3.95
(s, 6H, 2 ꢄ CH3O), 3.94 (s, 3H, CH3O), 3.83 (s, 3H, CH3O).
13C NMR (CDCl3, 250 MHz): d 189.2 (C]O), 159.9 (C-3),
153.1 (C-30, C-50), 144.6 (C-b), 142.4 (C-40), 136.2 (C-1),
133.4 (C-10), 129.9 (C-4), 122.1 (C-a), 121.0 (C-6), 116.0
(C-4), 113.7 (C-2), 106.0 (C-20, C-60), 60.9 (CH3O), 56.4
(2 ꢄ CH3O), 55.3 (CH3O). Anal. for C19H20O5. Calc. (%):
C, 69.50; H, 6.14. Found (%): C, 69.61; H, 6.40.
Acknowledgments
This work was supported by the Bulgarian National Foun-
dation for Scientific Research (Contract X-1514). We are very
much thankful to our colleague Dr. I. Timcheva for the fruitful
discussions.
References
4.1.3.5. 30,40,50-Trimethoxy-4-methylchalcone (44). Yield 96%,
white crystals, m.p. 120e123 ꢁC (MeOH). UV (MeOH):
325 nm. IR (KBr): 1650 (C]O), 1575 (C]C) cmꢂ1. MS m/
z [Mþ] 312 (100), [M ꢂ 15]þ 297 (72), [M ꢂ 31]þ 281 (25),
[M ꢂ 43]þ 269 (29), [M ꢂ 117]þ 195 (26), [M ꢂ 167]þ 145
(19), [M ꢂ 195]þ 117 (13). 1H NMR (CDCl3, 250 MHz):
d 7.79 (d, J ¼ 15.5 Hz, 1H, H-b), 7.54 (d, J ¼ 8.0 Hz, 2H,
H-2, H-6), 7.43 (d, J ¼ 15.5 Hz, 1H, H-a), 7.27 (s, 2H, H-20,
H-60), 7.22 (d, J ¼ 8.3 Hz, 1H, H-3, H-5), 3.94 (s, 6H,
2 ꢄ CH3O), 3.93 (s, 3H, CH3O), 2.39 (s, 3H, CH3). 13C
NMR (CDCl3, 250 MHz): d 189.3 (C]O), 153.1 (C-30, C-
50), 144.8 (C-b), 142.4 (C-40), 141.1 (C-4), 133.6 (C-1),
132.1 (C-10), 129.7 (C-3, C-5), 128.4 (C-2, C-6), 120.8 (C-
a), 106.1 (C-20, C-60), 60.9 (CH3O), 56.4 (2 ꢄ CH3O), 21.5
(CH3). Anal. for C19H20O4. Calc. (%): C, 73.06; H, 6.45.
Found (%): C, 73.10; H, 6.49.
[1] E.I. Crocco, L.M.J. Mimica, L.H. Muramati, C. Garcia, V.M. Souza,
L.R.B. Ruiz, C. Zaitz, An. Bras. Dermatol. 79 (2004) 689.
[2] L. Ni, C.Q. Meng, J.A. Sikorski, Expert Opin. Ther. Pat. 14 (2004) 1669.
[3] J.R. Dimmock, D.W. Elias, M.A. Beazely, N.M. Kandepu, Curr. Med.
Chem. 6 (1999) 1125.
[4] P. Boeck, P.C. Leal, R.A. Yunes, V.C. Fiiho, S. Lopez, M. Sortino,
A. Escalante, R.L.E. Furlan, S. Zacchino, Arch. Pharm. Chem. Life
Sci. 338 (2005) 87.
[5] K.L. Lahtchev, D.I. Batovska, St. P. Parushev, Bioorg. Med. Chem.,
submitted for publication.
[6] H. Tsuchiya, M. Sato, M. Akagiri, N. Takagi, T. Tanaka, M. Iinuma,
Pharmazie 49 (1994) 756.
[7] M. Sato, H. Tsuchiya, M. Akagiri, S. Fujiwara, T. Fujii, N. Takagi,
N. Matsuura, M. Iinuma, Lett. Appl. Microbiol. 18 (1994) 53.
[8] H. Elsohly, A. Joshi, A. Nimrod, A. Walker, Planta Med. 67 (2001) 87.
[9] A. Lopez, D. Ming, G.J. Towers, J. Nat. Prod. 65 (2002) 62.
[10] F.D. Spooner, G. Sykes, in: J.R. Norris, D.W. Ribbons (Eds.), Methods in
Microbiology, vol. 7B, Academic Press, London, 1972, p. 216.
[11] J. Hindler, in: H.D. Isenberg (Ed.), Clinical Microbiology Procedures
Handbook, American Society of Microbiology, Washington, DC, 1992.
[12] P.J. van Bladeren, B. van Ommen, Pharmacol. Ther. 51 (1991) 35.
[13] S.S. Gill, K. Ota, B.D. Hammock, Anal. Biochem. 131 (1983) 273.
[14] D.R. Frochlich, T.E. Burris, W.A. Brindley, Comp. Biochem. Physiol.
94B (1989) 661.
4.2. Microbiology
The strain C. albicans Berhaut 62I was obtained from the
collection of the Stefan Angeloff Institute of Microbiology,
Bulgarian Academy of Sciences, Sofia, Bulgaria.
[15] A.A. Bilgin, N. Yulug, S. Sarac, A. Tayhan, E.D. Berkman, Hacettepe
Univ. Eczacilik Fak. Derg. 7 (1987) 39; Chem. Abstr. 109, 89593k.
[16] A.T. Dinkova-Kostova, M.A. Massiah, R.E. Bozak, R.J. Hicks, P. Talalay,
Proc. Natl. Acad. Sci. U.S.A. 98 (2001) 3404.
4.2.1. Agar cup method
[17] J.R. Dimmock, P. Kumar, E.K. Manavathu, N. Obedeanu, J. Grewal,
Pharmazie 49 (1994) 909.
Two hundred microliter suspension of the fungus (107 cells/
ml) was plated on agar layer in Petri dishes (10 cm in diame-
ter). Five wells per dish were prepared, each 10 mm in
[18] E. Manavathu, C. Dunkan, Q. Porte, M. Gunasekaran, Mycopathologia.
135 (1996) 79.