E
C. Li et al.
Letter
Synlett
(6) (a) Ochiai, M.; Takeuchi, Y.; Katayama, T.; Sueda, T.; Miyamoto,
K. J. Am. Chem. Soc. 2005, 127, 12244. (b) Dohi, T.; Maruyama,
A.; Yoshimura, M.; Morimoto, K.; Tohma, H.; Kita, Y. Angew.
Chem. Int. Ed. 2005, 44, 6193. (c) Uyanik, M.; Yasui, T.; Ishihara,
K. Bioorg. Med. Chem. Lett. 2009, 19, 3848.
(7) (a) Guo, S.; Yu, J.-T.; Dai, Q.; Yang, H.; Cheng, J. Chem. Commun.
2014, 50, 6240. (b) Du, J.; Zhang, X.; Sun, X.; Wang, L. Chem.
Commun. 2015, 51, 4372.
(8) (a) Kharasch, M. S.; Sosnovsky, G. N.; Yang, C. J. Am. Chem. Soc.
1959, 81, 5819. (b) Andrus, M. B.; Lashley, J. C. Tetrahedron
2002, 58, 845. (c) Eames, J.; Watkinson, M. Angew. Chem. Int. Ed.
2001, 40, 3567.
(9) (a) Eames, J.; Watkinson, M. Angew. Chem. Int. Ed. 2001, 40,
3567. (b) Zhang, B.; Zhu, S. F.; Zhou, Q. L. Tetrahedron Lett. 2013,
54, 2665. (c) Tan, Q.; Hayashi, M. Adv. Synth. Catal. 2008, 350,
2639. (d) Zhou, Z.; Andrus, M. B. Tetrahedron Lett. 2012, 53,
4518.
(10) (a) Chen, M. S.; White, M. C. J. Am. Chem. Soc. 2004, 126, 1346.
(b) Chen, M. S.; Prabagaran, N.; Labenz, N. A.; White, M. C. J. Am.
Chem. Soc. 2005, 127, 6970. (c) Delcamp, J. H.; White, M. C. J. Am.
Chem. Soc. 2006, 128, 15076. (d) Covell, D. J.; White, M. C.
Angew. Chem. Int. Ed. 2008, 47, 6448. (e) Stang, E. M.; White, M.
C. Nat. Chem. 2009, 1, 547. (f) Stang, E. M.; White, M. C. Angew.
Chem. Int. Ed. 2011, 50, 2094.
P. J. Org. Chem. 2012, 77, 11339. (d) Wu, Y.; Choy, P. Y.; Mao, F.;
Kwong, F. Y. Chem. Commun. 2013, 49, 689. (e) Xu, Z.; Xiang, B.;
Sun, P. RSC Adv. 2013, 3, 1679. (f) Wu, Y.; Feng, L.-J.; Lu, X.;
Kwong, F. Y.; Luo, H.-B. Chem. Commun. 2013, 49, 689.
(17) (a) Li, C. L.; Deng, H. M.; Li, C. J.; Jia, X. S.; Li, J. Org. Lett. 2015, 17,
5718. (b) Li, C. L.; Jin, T.; Zhang, X.; Li, C. J.; Jia, X. S.; Li, J. Org.
Lett. 2016, 18, 1916. (c) Liu, Z. Q.; Zhang, X. L.; Li, J. X.; Li, F.; Li,
C. J.; Jia, X. S.; Li, J. Org. Lett. 2016, 18, 4052. (d) Li, C. L.; Deng, H.
M.; Jin, T.; Liu, Z. Q.; Jiang, R.; Li, C. J.; Jia, X. S.; Li, J. Synthesis
2017, 49, 4350.
(18) (a) Cheng, G. S.; Deng, H. M.; He, X.; Gao, Y.; Li, C. J.; Jia, X.; Li, J.
Eur. J. Org. Chem. 2017, 2017, 4507. (b) Jiang, H.; Tian, Y. M.;
Tian, L. M.; Li, J. RSC Adv. 2017, 7, 32300. (c) Tang, Z. Z.; Liu, Z.;
An, Y.; Jiang, R. L.; Zhang, X. L.; Li, C. J.; Jia, X. S.; Li, J. J. Org. Chem.
2016, 81, 9158. (d) Tian, Y. M.; Tian, L. M.; Li, C. J.; Jia, X. S.; Li, J.
Org. Lett. 2016, 18, 840. (e) Tian, Y. M.; Tian, L. M.; He, X.; Li, C. J.;
Jia, X. S.; Li, J. Org. Lett. 2015, 17, 4874. (f) Su, S. K.; Li, C. J.; Jia, X.
S.; Li, J. Chem. Eur. J. 2014, 20, 5905.
(19) (a) Pan, Y.; Feng, P.; Zheng, Q.-Z.; Liang, Y.-F.; Lu, J.-F.; Cui, Y.;
Jiao, N. Angew. Chem. Int. Ed. 2013, 52, 5827. (b) Shu, Z.; Ye, Y.;
Deng, Y.; Zhang, Y.; Wang, J. Angew. Chem. Int. Ed. 2013, 52,
10573.
(20) During our investigation, a little amount of benzoic acid can be
detected in most runs under the optimized conditions. And a
large amount of benzoic acid can be obtained in the absence of
alkene.
(11) Wei, W.; Zhang, C.; Xu, Y.; Wan, X. Chem. Commun. 2011, 47,
10827.
(12) Shi, E.; Shao, Y.; Chen, S.; Hu, H.; Liu, Z.; Zhang, J.; Wan, X. Org.
Lett. 2012, 14, 3384.
(21) Another mechanism involving the addition of acyloxy radical to
alkenes followed by H-elimilation is also possible. See: Li, X.; Xu,
X.; Zhou, C. Chem. Commun. 2012, 48, 12240.
(13) (a) Li, X.-H.; Wang, X.; Antonietti, M. ACS Catal. 2012, 2, 2082.
(b) Wang, P.; Minegishi, T.; Ma, G.; Takanabe, K.; Satou, Y.;
Maekawa, S.; Kobori, Y.; Kubota, J.; Domen, K. J. Am. Chem. Soc.
2012, 134, 2469. (c) Zhou, W.; Zhang, L.; Jiao, N. Angew. Chem.
Int. Ed. 2009, 48, 7094.
(14) (a) Piou, T.; Neuville, L.; Zhu, J. Angew. Chem. Int. Ed. 2012, 51,
11561. (b) Piou, T.; Bunescu, A.; Wang, Q.; Neuville, L.; Zhu, J.
Angew. Chem. Int. Ed. 2013, 52, 12385. (c) Guo, L.-N.; Wang, S.;
Duan, X.-H.; Zhou, S.-L. Chem. Commun. 2015, 51, 4803.
(d) Zhou, S.-L.; Guo, L.-N.; Wang, S.; Duan, X.-H. Chem. Commun.
2014, 50, 3589. (e) Zhou, S.-L.; Guo, L.-N.; Wang, H.; Duan, X.-H.
Chem. Eur. J. 2013, 19, 12970.
(15) (a) Aihara, Y.; Tobisu, M.; Fukumoto, Y.; Chatani, N. J. Am. Chem.
Soc. 2014, 136, 15509. (b) Xie, P.; Xie, Y.; Qian, B.; Zhou, H.; Xia,
C.; Huang, H. J. Am. Chem. Soc. 2012, 134, 9902. (c) Liang, Y.-F.;
Li, X.; Wang, X.; Yan, Y.; Feng, P.; Jiao, N. ACS Catal. 2015, 5,
1956. (d) Rout, S. K.; Guin, S.; Ghara, K. K.; Banerjee, A.; Patel, B.
K. Org. Lett. 2012, 14, 3982. (e) Liu, H.; Laurenczy, G.; Yan, N.;
Dyson, P. J. Chem. Commun. 2014, 50, 341.
(16) (a) Rout, S. K.; Guin, S.; Banerjee, A.; Khatun, N.; Gogoi, A.; Patel,
B. K. Org. Lett. 2013, 15, 4106. (b) Guin, S.; Rout, S. K.; Banerjee,
A.; Nandi, S.; Patel, B. K. Org. Lett. 2012, 14, 5294. (c) Yin, Z.; Sun,
(22) Experimental Procedure and Characterization Data
A 50 mL three-necked round-bottom flask equipped with a
magnetic stir bar was charged with toluene derivatives 2 (3.0
mmol), olefin 1 (1.0 mmol), NHPI (16.3 mg, 10 mol%), and Bu4NI
(36.9 mg, 10 mol%) in MeCN (8 mL) at room temperature. O2
was bubbled into the mixture at 75 °C for 6–12 h. After the reac-
tion was completed, it was monitored by TLC. The resulting
solution was poured into NaCl (15 mL), extracted with DCM
(twice). The combined organic layers were dried over anhy-
drous Na2SO4 and solvents were removed in vacuo. The residue
was purified by PLC Silica gel plate (eluent: petroleum
ether/ethyl acetate = 30:1) to give the desired product.
Compound 3a: 123 mg, 61% yield; colorless oil. 1H NMR (400
MHz, CDCl3): δ = 8.07–8.05 (m, 2 H), 7.56–7.52 (m, 1 H), 7.44–
7.41 (m, 2 H), 6.02–5.98 (m, 1 H), 5.86–5.82 (m, 1 H), 5.52–5.51
(m, 1 H), 2.17–2.10 (m, 1 H), 2.08–2.02 (m, 2 H), 1.94–1.92 (m, 2
H),1.74–1.61 (m, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ =
166.2, 132.8, 132.7, 130.8, 129.6, 128.3, 125.7, 68.6, 28.4, 24.9,
18.9 ppm.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2018, 29, A–E