Organic Letters
Letter
2005, 127, 13094−13095. (d) Parrott, M. C.; Finniss, M.; Luft, J. C.;
Pandya, A.; Gullapalli, A.; Napier, M. E.; DeSimone, J. M. J. Am. Chem.
Soc. 2012, 134, 7978−7982.
active bis-silyl complex 7b. We observed that this hydrosilylation
is nearly four times slower compared to dehydrogenative
silylation (t1/2 = 30 min for dehydrogenative silylation of 1d
and t1/2 = 120 min for hydrosilylation of 1d), presumably
resulting from added steric hindrance with the Ru complex.
Moreover, we conjecture that bulky 2,6-diisopropyl groups in the
NHC ligand and other moieties in the metal−ligand sphere such
as adamantyl and silylated nitrate likely impede the propensity of
β-hydride elimination (cf., 6e to 6f and 3) by restricted
conformational change for requisite syn-elimination within 7e.
A structurally similar catalyst Ru-8 holding the smaller mesityl
group in NHC reduces product selectivity as shown in Table 1,
entry 8.
In summary, we have developed regio- and stereoselective
dehydrogenative silylation and hydrosilylation of vinylarenes and
alkoxysilanes by exploiting ruthenium alkylidene catalysts to
access vinylsilanes and alkylsilanes. Notably, variation of catalyst
structure, specifically both L- and X-type ligands at ruthenium,
greatly altered the reaction pathways to dehydrogenative
silylation and hydrosilylation. The readily accessible catalysts,
with a cis,cis-1,5-cyclooctadiene hydrogen acceptor for the
dehydrogenative silylation, exhibited relatively broad functional
group tolerance and high regio- and stereoselectivity. Although a
variety of nonmetathetical synthetic applications of Grubbs-type
ruthenium alkylidenes are known, including silylation reactions, a
mechanistic understanding of nonmetathetical catalytic function
of such catalysts is still limited. Our preliminary studies on
dehydrogenative silylation showed that the turnover-determin-
ing step is the Si−H cleavage by Ru alkylidene. The origin of such
ligand-controlled selectivity regarding dehydrogenative silylation
and hydrosilylation as well as their detailed mechanism are
currently under investigation.
(3) (a) Mitchener, J. C.; Wrighton, M. S. J. Am. Chem. Soc. 1981, 103,
975−977. (b) Millan, A.; Towns, E.; Maitlis, P. M. J. Chem. Soc., Chem.
Commun. 1981, 673−674. (c) Millan, A.; Fernandez, M.-J.; Bentz, P.;
Maitlis, P. M. J. Mol. Catal. 1984, 26, 89−104. (d) Fernandez, M. J.;
Esteruelas, M. A.; Jimenez, M. S.; Oro, L. A. Organometallics 1986, 5,
1519−1520. (e) Hori, Y.; Mitsudo, T.-a.; Watanabe, Y. Bull. Chem. Soc.
Jpn. 1988, 61, 3011−3013. (f) Tanke, R. S.; Crabtree, R. H.
Organometallics 1991, 10, 415−418. (g) Kakiuchi, F.; Tanaka, Y.;
Chatani, N.; Murai, S. J. Organomet. Chem. 1993, 456, 45−47.
(h) Takeuchi, R.; Yasue, H. Organometallics 1996, 15, 2098−2102.
(i) LaPointe, A. M.; Rix, F. C.; Brookhart, M. J. Am. Chem. Soc. 1997,
119, 906−917. (j) Sakar, T. K. Sci. Synth. 2002, 4, 837. (k) Sprengers, J.
W.; de Greef, M.; Duin, M. A.; Elsevier, C. J. Eur. J. Inorg. Chem. 2003,
2003, 3811−3819. (l) Hirano, K.; Yorimitsu, H.; Oshima, K. J. Am.
Chem. Soc. 2007, 129, 6094−6095. (m) Nakamura, S.; Yonehara, M.;
Uchiyama, M. Chem. - Eur. J. 2008, 14, 1068−1078. (n) Jiang, Y.;
Blacque, O.; Fox, T.; Frech, C. M.; Berke, H. Chem. - Eur. J. 2009, 15,
2121−2128. (o) Naumov, R. N.; Itazaki, M.; Kamitani, M.; Nakazawa,
H. J. Am. Chem. Soc. 2012, 134, 804−807. (p) Truscott, B. J.; Slawin, A.
M. Z.; Nolan, S. P. Dalton Trans. 2013, 42, 270−276.
(4) Lu, B.; Falck, J. R. J. Org. Chem. 2010, 75, 1701−1705.
(5) Cheng, C.; Simmons, E. M.; Hartwig, J. F. Angew. Chem., Int. Ed.
2013, 52, 8984−8989.
(6) (a) Denmark, S. E.; Wang, Z. Org. Lett. 2001, 3, 1073−1076.
́
(b) Arico, C. S.; Cox, L. R. Org. Biomol. Chem. 2004, 2, 2558−2562.
(c) Maifeld, S. V.; Tran, M. N.; Lee, D. Tetrahedron Lett. 2005, 46, 105−
108. (d) Menozzi, C.; Dalko, P. I.; Cossy, J. J. Org. Chem. 2005, 70,
10717−10719. (e) Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc. 2005, 127,
17644−17655.
(7) (a) Denmark, S. E.; Yang, S.-M. Org. Lett. 2001, 3, 1749−1752.
(b) Pietraszuk, C.; Fischer, H.; Rogalski, S.; Marciniec, B. J. Organomet.
Chem. 2005, 690, 5912−5921. (c) Denmark, S. E.; Neuville, L.; Christy,
M. E. L.; Tymonko, S. A. J. Org. Chem. 2006, 71, 8500−8509. (d) Li, J.;
Sun, C.; Lee, D. J. Am. Chem. Soc. 2010, 132, 6640−6641. (e) Rooke, D.
A.; Ferreira, E. M. J. Am. Chem. Soc. 2010, 132, 11926−11928. (f) Wang,
P.; Yeo, X.-L.; Loh, T.-P. J. Am. Chem. Soc. 2011, 133, 1254−1256.
(g) Miller, Z. D.; Li, W.; Belderrain, T. R.; Montgomery, J. J. Am. Chem.
Soc. 2013, 135, 15282−15285.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
(8) Atienza, C. C. H.; Diao, T.; Weller, K. J.; Nye, S. A.; Lewis, K. M.;
Delis, J. G. P.; Boyer, J. L.; Roy, A. K.; Chirik, P. J. J. Am. Chem. Soc. 2014,
136, 12108−12118.
Experimental details and spectroscopic characterization
data for all compounds (PDF)
(9) (a) McAtee, J. R.; Martin, S. E. S.; Ahneman, D. T.; Johnson, K. A.;
Watson, D. A. Angew. Chem., Int. Ed. 2012, 51, 3663−3667. (b) Martin,
S. E. S.; Watson, D. A. J. Am. Chem. Soc. 2013, 135, 13330−13333.
(c) McAtee, J. R.; Yap, G. P. A.; Watson, D. A. J. Am. Chem. Soc. 2014,
136, 10166−10172.
(10) (a) Dragutan, V.; Dragutan, I.; Delaude, L.; Demonceau, A. Coord.
Chem. Rev. 2007, 251, 765−794. (b) Alcaide, B.; Almendros, P.; Luna, A.
Chem. Rev. 2009, 109, 3817−3858.
(11) Bokka, A.; Hua, Y.; Berlin, A. S.; Jeon, J. ACS Catal. 2015, 5,
3189−3195.
(12) (a) Woo, H. G.; Tilley, T. D. J. Am. Chem. Soc. 1989, 111, 3757−
3758. (b) Brookhart, M.; Grant, B. E. J. Am. Chem. Soc. 1993, 115,
2151−2156. (c) Sadow, A. D.; Tilley, T. D. J. Am. Chem. Soc. 2005, 127,
643−656.
(13) (a) Hartung, J.; Grubbs, R. H. J. Am. Chem. Soc. 2013, 135,
10183−10185. (b) Keitz, B. K.; Endo, K.; Patel, P. R.; Herbert, M. B.;
Grubbs, R. H. J. Am. Chem. Soc. 2012, 134, 693−699.
(14) (a) Schleyer, P. v. R.; Williams, J. E., Jr; Blanchard, K. J. Am. Chem.
Soc. 1970, 92, 2377−2386. (b) Allinger, N. L.; Sprague, J. T. J. Am. Chem.
Soc. 1972, 94, 5734−5747. (c) Bielawski, C. W.; Grubbs, R. H. Prog.
Polym. Sci. 2007, 32, 1−29.
(15) For stoichiometric reactions, cross-over experiments, and other
labeling studies for intramolecular hydrosilylation, see ref 11.
(16) Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40−73.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the American Chemical Society Petroleum Research
Fund (PRF No. 54831-DNI1) for support of our program. We
acknowledge Materia, Inc., for the generous donation of Ru
alkylidene catalysts.
REFERENCES
■
(1) (a) Fleming, I.; Barbero, A.; Walter, D. Chem. Rev. 1997, 97, 2063−
2192. (b) Brook, M. A. Silicon in organic, organometallic, and polymer
chemistry. J. Wiley: 2000;. (c) Nakao, Y.; Hiyama, T. Chem. Soc. Rev.
2011, 40, 4893−4901. (d) Marciniec, B.; Maciejewski, H.; Pietraszuk,
C.; Pawluc, P. Hydrosilylation: A Comprehensive Review On Recent
Advances; Marciniec, B., Ed.; Springer: Berlin, 2009; Vol. 1, pp 3−51.
(2) (a) Denmark, S.; Baird, J. D. Chem. - Eur. J. 2006, 12, 4954−4963.
(b) Jones, G. R.; Landais, Y. Tetrahedron 1996, 52, 7599−7662.
(c) Ting, R.; Adam, M. J.; Ruth, T. J.; Perrin, D. M. J. Am. Chem. Soc.
D
Org. Lett. XXXX, XXX, XXX−XXX