418
S. R. Kandalkar et al. / Tetrahedron Letters 54 (2013) 414–418
W.; Balimane, P.; Patel, K.; Yang, Z.; Marathe, P.; Kadiyala, P.; Tebben, A. J.;
Sheriff, S.; Chang, Y.; Ziemba, T.; Zhang, H.; Chen, B.-C.; DelMonte, A. J.;
Aranibar, N.; McKinnon, M.; Barrish, J. C.; Suchard, S. J.; Murali Dhar, T. G. J.
Med. Chem. 2010, 53, 3814–3830.
thank Professor Y.L.N. Murthy (Andhra University), Dr. Vinod Vyav-
ahare, Dr. Anup Ranade, Santosh Kurhade for their help and Dr.
Mahesh Mone for the analytical support.
9. Thomas, A. A.; Huerou, Y. L.; Meese, J. D.; Gunawardana, I.; Kaplan, T.; Romoff,
T. T.; Gonzales, S. S.; Condroski, K.; Boyd, S. A.; Ballard, J.; Bernat, B.; DeWolf,
W.; Han, M.; Lee, P.; Lemieux, C.; Pedersen, R.; Pheneger, J.; Poch, G.; Smith, D.;
Sullivan, F.; Weiler, S.; Wright, S. K.; Lin, J.; Brandhuber, B.; Vigers, G. Bioorg.
Med. Chem. Lett. 2008, 18, 2206–2210.
Advinus publication no. ADV–A–019.
Supplementary data
10. (a) Goriya, Y.; Ramana, C. V. Tetrahedron 2010, 66, 7642–7650 [traces of the
desired product (<5%) was obtained along with tetrazolopyridine (21%) and
recovered starting material (69%).by HPLC]; (b) Maejima, T.; Shimoda, Y.;
Nozaki, K.; Mori, S.; Sawama, Y.; Monguchi, Y.; Sajiki, H. Tetrahedron 2012, 68,
1712–1722 [starting material was consumed to provide ꢀ40% of the desired
product along with side products].
11. (a) Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 635–646; (b) Gololobov, Y.
G.; Zhmurova, I. N.; Kasukhin, L. F. Tetrahedron 1981, 37, 437–472; (c) Vaultier,
M.; Knouzi, N.; Carrie, R. Tetrahedron Lett. 1983, 24, 763–764.
12. (a) Chattopadhyay, B.; Vera, C. I. R.; Chuprakov, S.; Gevorgyan, V. Org. Lett.
2010, 12, 2166–2169; (b) Chan, J.; Faul, M. Tetrahedron Lett. 2006, 47, 3361–
3363; (c) Lowe-Ma, C. K.; Nissan, R. A.; Wilson, W. S. J. Org. Chem. 1990, 55,
3755–3761; (d) Pochinok, V. V.; Averamenko, L. F.; Grigorenko, P. S.; Skopenko,
V. N. Russ. Chem. Rev. 1975, 44, 481.
13. Sasaki, T.; Kanematsu, K.; Murata, M. Tetrahedron 1971, 27, 5359–5366.
14. Typical procedure for the preparation of tert-butyl 6-amino nicotinate (5): a
round-bottom flask equipped with a reflux condensor and magnetic stirring
bar was charged with tert-butyl 6-chloropyridine-3-carboxylate (2, 6.0 g,
28.17 mmol), sodium azide (3.66 g, 56.3 mmol), triphenylphosphine (14.77 g,
56.3 mmol), and DMSO (160 mL). The reaction mixture was stirred at 120 °C.
Reaction progress was monitored by TLC. After full conversion of the starting
material, 1 N HCl (40 mL) was added to the reaction mixture and stirring was
continued at 120 °C for an additional 1 h. The reaction mixture was cooled to
room temperature and diluted with 1 N HCl (40 mL). The resulting mixture
was poured into distilled water (500 mL) and the aqueous layer was washed
with EtOAc (2 Â 100 mL) to remove triphenylphosphine oxide and the majority
of DMSO thus allowing easy removal of solvent at the end of work-up. The
aqueous layer was slowly neutralized with saturated aqueous NaHCO3. The
aqueous layer was extracted with EtOAc (2 Â 200 mL). The combined organic
layers were washed with water (100 mL), brine (50 mL), dried over sodium
sulfate, filtered and concentrated under reduced pressure to afford the desired
Supplementary data (synthetic procedure, analytical data and
spectra) associated with this article can be found, in the online ver-
References and notes
1. (a) Biswas, K.; Peterkin, T. A. N.; Bryan, M. C.; Arik, L.; Lehto, S. G.; Sun, H.;
Hsieh, F.-Y.; Xu, C.; Fremeau, R. T.; Allen, J. R. J. Med. Chem. 2011, 54, 7232–
7246; (b) Takamatsu, K.; Takano, A.; Yakushiji, N.; Morohashi, K.; Morishita, K.;
Matsuura, N.; Makishima, M.; Tai, A.; Sasaki, K.; Kakuta, H. ChemMedChem
2008, 3, 780–787; (c) Dominguez, C.; Smith, L.; Huang, Q.; Yuan, C.; Ouyang, X.;
Cai, L.; Chen, P.; Kim, J.; Harvey, T.; Syed, R.; Kim, T.-S.; Tasker, A.; Wang, L.;
Zhang, M.; Coxon, A.; Bready, J.; Starnes, C.; Chen, D.; Gan, Y.; Neervannan, S.;
Kumar, G.; Polverino, A.; Kendall, R. Bioorg. Med. Chem. Lett. 2007, 17, 6003–
6008.
2. (a) Pfefferkorn, J. A.; Guzman-Perez, A.; Litchfield, J.; Aiello, R.; Treadway, J. L.;
Pettersen, J.; Minich, M. L.; Filipski, K. J.; Jones, C. S.; Tu, M.; Aspnes, G.; Risley,
H.; Bian, J.; Stevens, B. D.; Bourassa, P.; D’Aquila, T.; Baker, L.; Barucci, N.;
Robertson, A. S.; Bourbonais, F.; Derksen, D. R.; MacDougall, M.; Cabrera, O.;
Chen, J.; Lapworth, A. L.; Landro, J. A.; Zavadoski, W. J.; Atkinson, K.; Haddish-
Berhane, N.; Tan, B.; Yao, L.; Kosa, R. E.; Varma, M. V.; Feng, B.; Duignan, D. B.;
El-Kattan, A.; Murdande, S.; Liu, S.; Ammirati, M.; Knafels, J.; DaSilva-Jardine,
P.; Sweet, L.; Liras, S.; Rolph, T. P. J. Med. Chem. 2012, 55, 1318–1333; (b) Pike, K.
G.; Allen, J. V.; Caulkett, P. W. R.; Clarke, D. S.; Donald, C. S.; Fenwick, M. L.;
Johnson, K. M.; Johnstone, C.; McKerrecher, D.; Rayner, J. W.; Walker, R. P.;
Wilson, I. Bioorg. Med. Chem. Lett. 2011, 21, 3467–3470; (c) Ohsawa, F.;
Morishita, K.-I.; Yamada, S.; Makishima, M.; Kakuta, H. ACS Med. Chem. Lett.
2010, 1, 521–525.
3. Hassig, C. A.; Symons, K. T.; Guo, X.; Nguyen, P.-M.; Annable, T.; Wash, P. L.;
Payne, J. E.; Jenkins, D. A.; Bonnefous, C.; Trotter, C.; Wang, Y.; Anzola, J. V.;
Milkova, E. L.; Hoffman, T. Z.; Dozier, S. J.; Wiley, B. M.; Saven, A.; Malecha, J.
W.; Davis, R. L.; Muhammad, J.; Shiau, A. K.; Noble, S. A.; Rao, T. S.; Smith, N. D.;
Hager, J. H. Mol. Cancer Ther. 2008, 7, 1054–1065.
4. Goldberg, D. R.; Hao, M.-H.; Qian, K. C.; Swinamer, A. D.; Gao, D. A.; Xiong, Z.;
Sarko, C.; Berry, A.; Lord, J.; Magolda, R. L.; Fadra, T.; Kroe, R. R.; Kukulka, A.;
Madwed, J. B.; Martin, L.; Pargellis, C.; Skow, D.; Song, J. J.; Tan, Z.; Torcellini, C.
A.; Zimmitti, C. S.; Yee, N. K.; Moss, N. J. Med. Chem. 2007, 50, 4016–4026.
5. Hilton, S.; Naud, S.; Caldwell, J. J.; Boxall, K.; Burns, S.; Anderson, V. E.; Antoni,
L.; Allen, C. E.; Pearl, L. H.; Oliver, A. W.; Aherne, G. W.; Garrett, M. D.; Collins, I.
Bioorg. Med. Chem. Lett. 2010, 18, 707–718.
product
5
with high purity without column purification and/or
recrystallization (4.95 g, 90%).
1H NMR and 13C NMR spectra were recorded on a Varian 400 spectrometer
using TMS as an internal standard.
1H NMR (400 MHz; DMSO-d6) d 1.50 (s, 9H), 6.42 (d, J = 8.8 Hz, 1H), 6.75 (br s,
2H), 7.76 (d, J = 8.6 Hz, 1H), 8.44 (s, 1H).
13C NMR (100 MHz; DMSO-d6): d 28.41 (3C), 80.08, 107.35, 115.42, 137.95,
151.29, 162.76, 165.05.
LC–MS (m/z): 195.3 [M+1].
15. (a) For the synthesis of tert-butyl 5-aminopyrazine-2-carboxylate: Chen, S.;
Corbett, W. L.; Guertin, K. R.; Haynes, N. E.; Kester, R. F.; Mennona, F. A.;
Mischke, S. G.; Qian, Y.; Sarabu, R.; Scott, N. R.; Thakkar, K. C. WO2004/052869,
2004.; (b) Tamura, Y.; Suzuki, S.; Tada, Y.; Yonezawa, S.; Fujikoshi, C.;
Matsumoto, S.; Kooriyama, Y.; Ueno, T. WO2008/133274, 2008.
6. Bhuniya, D.; Bhosale, S. B.; Kapkoti, G. S.; Palle, V. P.; De, S.; Mookhtiar, K. A.;
Dave, B.; Deshpande, A.; Kurhade, S.; Kobal, B.; Naik, K.; Kandalkar, S. U.S.
Patent 2010/0310493A1, 2010.
7. Wright, S. W. J. Heterocycl. Chem. 2012, 49, 442–445.
8. Watterson, S. H.; Xiao, Z.; Dodd, D. S.; Tortolani, D. R.; Vaccaro, W.; Potin, D.;
Launay, M.; Stetsko, D. K.; Skala, S.; Davis, P. M.; Lee, D.; Yang, X.; McIntyre, K.