C O M M U N I C A T I O N S
Figure 1. ORTEP representation of 1-(HNC6H10) (left) and 1-(C4H6) (right) at 30 % probability. Hydrogen atoms are omitted for clarity. Selected distances
(Å) are also included.
Scheme 1
benzylamine complex, 1-(BnNC6H10), was identified following
turnover. Diallyamine, the least hindered in the series, produced
only stoichiometric [2π + 2π] cyclization, cleanly affording
1-(HNC6H10) upon addition to 1-(N2)2 (eq 3). Liberation of free
azobicyclo[0.2.3]heptane was accomplished by exposure to 1 atm
of carbon monoxide. Thus, product inhibition dictates the rate of
catalytic turnover, where the less substituted and hence more
nucleophilic azabicycles coordinate more tightly and inhibit conver-
sion. It should also be noted that the most facile cycloadditions
were observed for the most thermodynamically favored cases,
consistent with the Thorpe-Ingold effect.10
dition that takes advantage of the unique electronic structure of
bis(imino)pyridine iron compounds.
Acknowledgment. We thank the Packard Foundation for finan-
cial support. P.J.C. is a Cottrell Scholar supported by the Research
Corporation and a Camille Dreyfus Teacher-Scholar. We also thank
Professor Barry Carpenter for assistance with the DFT calculations.
Supporting Information Available: Additional experimental,
computational, and crystallographic data. This material is available free
Red brown 1-(HNC6H10) was characterized by X-ray diffraction
References
(Figure 1). Both the metrical parameters and NMR spectroscopic
data are analogous to the N,N-(dimethylamino)pyridine iron
compound, 1-DMAP,8a where computational, spectroscopic, and
structural data established an intermediate spin (SFe ) 1) ferrous
(1) (a) Lautens, M.; Klute, W.; Tam, W. Chem. ReV. 1996, 96, 49-62. (b)
For a more recent Ni example, see (b) Saito, S.; Hirayama, K.; Kabuto,
Yamamoto, Y. J. Am. Chem. Soc. 2000, 122, 10766.
(2) Woodward, R. B.; Hoffmann, R. Angew. Chem., Int. Ed. Engl. 1969, 8,
781.
(3) Crimmins, M. T. In ComprehensiVe Organic Synthesis; Trost, B. M.,
Fleming, I., Paquette, L. A., Eds.; Pergamon: Oxford, 1991; Vol. 5, p
123.
(4) Ohara, H.; Itoh, T.; Nakamura, M.; Nakamura, E. Chem. Lett. 2001, 7,
624.
(5) (a) Wang, L.-C.; Jang, H.-Y.; Roh, Y.; Lynch, V.; Schultz, A. J.; Wang,
X.; Krische, M. J. J. Am. Chem. Soc. 2002, 124, 9448. (b) Baik, T.-G.;
Luiz, A. L.; Wang, L.-C.; Krische, M. J. Am. Chem. Soc. 2001, 123, 6716.
(c) Yang, J.; Cauble, D. F.; Berro, A. J.; Bauld, N. L.; Krische, M. J. J.
Org. Chem. 2004, 69, 7979.
(6) (a) Bart, S. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2004, 126,
13794. (b) Archer, A. M.; Bouwkamp, M. W.; Cortez, M.-P.; Lobkovsky,
E.; Chirik, P. J. Organometallics 2006, 25, 4278.
(7) Bart, S. C.; Lobkovsky, E.; Bill, E.; Chirik, P. J. J. Am. Chem. Soc. 2006,
128, 5302.
(8) (a) Bart, S. C.; Chlopek, K.; Bill, E.; Bouwkamp, M. W.; Lobkovsky, E.;
Neese, F.; Wieghardt, K.; Chirik, P. J. J. Am. Chem. Soc., in press. (b) de
Bruin, B.; Bill, E.; Bothe, E.; Weyermu¨ller, T.; Wieghardt, K. Inorg. Chem.
2000, 39, 2936. (c) Scott, J.; Gambarotta, S.; Korobkov, I.; Knijnenburg,
Q.; de Bruin, B.; Budzelaar, P. H. M. J. Am. Chem. Soc. 2005, 127, 17204.
(9) (a) Molander, G. A.; Hoberg, J. O. J. Am. Chem. Soc. 1992, 114, 3123.
(b) Piers, W. E.; Shapiro, P. J.; Bunel, E. E.; Bercaw, J. E. Synlett 1990,
2, 74. (c) Trost, B. M.; Krische, M. J. Synlett 1998, 1.
(10) (a) Beesley, R. M.; Ingold, C. K.; Thorpe, J. F. J. Chem. Soc. 1915, 107,
1080. (b) Ingold, C. K. J. Chem. Soc. 1921, 119, 305. (c) Ingold, C. K.;
Sako S.; Thorpe, J. F. J. Chem. Soc. 1922, 120, 1117.
(11) (a) Norman, D. W.; Ferguson, M. J.; McDonald, R.; Stryker, J. M.
Organometallics 2006, 25, 2705. (b) Bachler, V.; Grevels, F.-W.; Kerpen,
K.; Olbrich, G.; Schaffner, K. Organometallics 2003, 22, 1696.
(12) Campora, J.; Palma, P.; Carmona, E. Coord. Chem. ReV. 1999, 193-
195, 207.
center complexed by a bis(imino)pyridine dianion, [iPrPDI]2-
.
To gain further insight into the mechanism of the cyclization
reaction and in particular, the nature of the R,ω-diene intermediate,
1-(N2)2 was treated with a diolefin unlikely to undergo intramo-
lecular [2π + 2π] cycloaddition. For this reason, 1,3-butadiene was
added to 1-(N2)2 and yielded a red, diamagnetic solid identified as
the iron-butadiene compound, 1-(C4H6). The solid-state structure
(Figure 1, right) reveals a rare example of trans-butadiene coordina-
tion11 in addition to a two electron reduced bis(imino)pyridine
chelate. These data support an Fe(II) complexed by [iPrPDI]2- rather
than an Fe(0) ion with a neutral chelate.8
The proposed mechanism (Scheme 1) for the catalytic [2π +
2π] cycloaddition involves initial substitution of the N2 ligands by
the diene. Based on the properties of 1-(C4H6), the oxidation states
of the iron are maintained as ferrous throughout the process.
Following C-C coupling to form the metallocycle, formal reductive
elimination yields the observed bicycle and regenerates the iron
diene complex. The redox activity of the [iPrPDI] ligand preserves
the ferrous oxidation state throughout the cycle and may prevent
complications from Fe(0) precipitation that are observed with other
(e.g., Ni) metallocycles.12
In summary, we have discovered an efficient method for the
synthesis of cyclobutanes via iron-catalyzed [2π + 2π] cycload-
JA064711U
9
J. AM. CHEM. SOC. VOL. 128, NO. 41, 2006 13341