750
Q. Li, H. Gau
LETTER
2011, 133, 7696. (k) Minkler, S. R. K.; Lipshutz, B. H.;
Krause, N. Angew. Chem. Int. Ed. 2011, 50, 1..
(2) For reviews, see: (a) Hoffmann-Röder, A.; Krause, N.
Angew. Chem. Int. Ed. 2004, 43, 1196. (b) Kim, H.;
Williams, L. J. Curr. Opin. Drug Discovery Dev. 2008, 11,
891.
(3) For recent reviews, see: (a) Bates, R.; Satcharoen, V. Chem.
Soc. Rev. 2002, 31, 12. (b) Zimmer, R.; Dinesh, C.;
Nandanan, E.; Khan, F. A. Chem. Rev. 2000, 100, 3067.
(c) Hashmi, A. S. K. Angew. Chem. Int. Ed. 2000, 39, 3590.
(d) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535.
(e) Marshall, J. A. Chem. Rev. 2000, 100, 3163. (f) Sydnes,
L. Chem. Rev. 2003, 103, 1133. (g) Ma, S. M. Aldrichimica
Acta 2007, 40, 91.
(4) For recent reviews on the synthesis of allenes, see:
(a) Krause, N.; Hoffmann-Röder, A. Tetrahedron 2004, 60,
11671. (b) Brummond, K. M.; Deforrest, J. E. Synthesis
2007, 795. (c) Ogasawara, M. Tetrahedron: Asymmetry
2009, 20, 259. (d) Yu, S. C.; Ma, S. M. Chem. Commun.
2011, 47, 5384.
(5) (a) Pona, P.; Crabbé, P. J. J. Am. Chem. Soc. 1968, 90, 4733.
(b) Rona, P.; Crabbé, P. J. Am. Chem. Soc. 1969, 91, 3289.
(c) Gaudemar, M. J. J. Organomet. Chem. 1976, 108, 159.
(d) Daeuble, J. F.; McGettigan, C.; Dollat, J. M.; Luche, J.
L.; Crabbé, P. J. J. Chem. Soc., Chem. Commun. 1977, 761.
(e) Coppola, G. M.; Schuster, H. F. Allenes in Organic
Synthesis; Wiley: New York, 1984. (f) Alexakis, A.; Marek,
I.; Mangeney, P.; Normant, J. F. J. Am. Chem. Soc. 1990,
112, 8042. (g) Daeuble, J. F.; McGettigan, C.; Stryker, J. M.
Tetrahedron Lett. 1990, 31, 2397. (h) Myers, A. G.; Zheng,
B. J. Am. Chem. Soc. 1996, 118, 4492. (i) Brummond, K.
M.; Lu, J. J. Am. Chem. Soc. 1999, 121, 5087. (j) Deutsch,
C.; Lipshutz, B. H.; Krause, N. Angew. Chem. Int. Ed. 2007,
46, 1650.
(6) For selected examples of allene synthesis with related
methods, see: (a) Fürstner, A.; Mendez, M. Angew. Chem.
Int. Ed. 2003, 42, 5355. (b) Pu, X.; Ready, J. M. J. Am.
Chem. Soc. 2008, 130, 10874. (c) Lo, V. K.-Y.; Wong, M.-
K.; Che, C.-M. Org. Lett. 2008, 10, 517. (d) Tang, M.; Fan,
C.-A.; Zhang, F.-M.; Tu, Y.-Q.; Zhang, W.-X.; Wang, A.-X.
Org. Lett. 2008, 10, 5585. (e) Ogasawara, M.; Okada, A.;
Nakajima, K.; Takahashi, T. Org. Lett. 2009, 11, 177.
(f) Zhao, X.; Zhong, Z.; Peng, L.; Zhang, W.; Wang, J.
Chem. Commun. 2009, 2535. (g) Liu, H.; Leow, D.; Huang,
K.-W.; Tan, C.-H. J. Am. Chem. Soc. 2009, 131, 7212.
(h) Kolakowski, R. V.; Manpadi, M.; Zhang, Y.; Emge, T. J.;
Williams, L. J. J. Am. Chem. Soc. 2009, 131, 12910. (i) Lo,
V. K.-Y.; Zhou, C.-Y.; Wong, M.-K.; Che, C.-M. Chem.
Commun. 2010, 46, 213.
(13) (a) Nakamura, H.; Kamakura, T.; Ishikura, M.; Biellmann,
J. F. J. Am. Chem. Soc. 2004, 126, 5958. (b) Nakamura, H.;
Onagi, S. Tetrahedron Lett. 2006, 47, 2539. (c) Nakamura,
H.; Kamakura, T.; Onagi, S. Org. Lett. 2006, 8, 2095.
(d) Nakamura, H.; Ishikura, M.; Sugiishi, T.; Kamakura, T.;
Biellmann, J. F. Org. Biomol. Chem. 2008, 6, 1471.
(e) Bolte, B.; Odabachian, Y.; Gagosz, F. J. Am. Chem. Soc.
2010, 132, 7294.
(14) (a) Badone, D.; Cardamone, R.; Guzzi, U. Tetrahedron Lett.
1994, 35, 5477. (b) Huang, C. W.; Shanmugasundaram, M.;
Chang, H. M.; Cheng, C. H. Tetrahedron 2003, 59, 3635.
(15) Lee, K.; Seomon, D.; Lee, P. H. Angew. Chem. Int. Ed. 2002,
41, 3901.
(16) (a) Lin, M. J.; Loh, T. P. J. Am. Chem. Soc. 2003, 125,
13042. (b) Lee, P. H.; Kim, H.; Lee, K. Adv. Synth. Catal.
2005, 347, 1219.
(17) Ahmed, M.; Arnauld, T.; Barrett, A. G. M.; Braddock, D. C.;
Flack, K.; Procopiou, P. A. Org. Lett. 2000, 2, 551.
(18) Lavallo, V.; Frey, G. D.; Kousar, S.; Donnadieu, B.;
Bertrand, G. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 13569.
(19) Xiao, Q.; Xia, Y.; Li, H.; Zhang, Y.; Wang, J. B. Angew.
Chem. Int. Ed. 2011, 50, 1114.
(20) (a) Toshikazu, H.; Daisuke, M.; Koichi, Y.; Toshio, A.
Tetrahedron Lett. 1986, 27, 929. (b) Macdonald, T. L.;
Reagan, D. R. J. Org. Chem. 1990, 55, 4740. (c) Ma, S. M.;
Negishi, E. J. Am. Chem. Soc. 1995, 117, 6345.
(d) Taherirastgar, F.; Brandsma, L. Synth. Commun. 1997,
27, 4035. (e) Llerena, D.; Buisine, O.; Aubert, C.; Malacria,
M. Tetrahedron 1998, 54, 9373. (f) Satoh, T.; Kurihara, T.;
Fujita, K. Tetrahedron 2001, 57, 5369. (g) Krause, N.;
Hoffmann-Röder, A.; Canisius, J. Synthesis 2002, 1759.
(h) Li, J.; Kong, W.; Fu, C.; Ma, S. M. J. Org. Chem. 2009,
74, 5104. (i) Li, J.; Zhou, C.; Fu, C.; Ma, S. Tetrahedron
2009, 65, 3695. (j) Poonoth, M.; Krause, N. Adv. Synth.
Catal. 2009, 351, 117. (k) Tang, X.; Woodward, S.; Krause,
N. Eur. J. Org. Chem. 2009, 2836. (l) Ma, Z.; Zeng, R.; Yu,
Y.; Ma, S. Tetrahedron Lett. 2009, 50, 6472. (m) Pu, X.;
Qi, X.; Ready, J. M. J. Am. Chem. Soc. 2009, 131, 10364.
(21) (a) Ng, S.-S.; Jamison, T. F. Tetrahedron 2006, 62, 11350.
(b) Caeiro, J.; Sestelo, J. P.; Sarandeses, L. A. Chem. Eur. J.
2008, 14, 741. (c) Koyama, I.; Kurahashi, T.; Matsubara, S.
J. Am. Chem. Soc. 2009, 131, 1350. (d) Shi, Y.; Huang, J.;
Yang, Y.-F.; Wu, L.-Y.; Niu, Y.-N.; Huo, P.-F.; Liu, X.-Y.;
Liang, Y.-M. Adv. Synth. Catal. 2009, 351, 141. (e) Terao,
J.; Bando, F.; Kambe, N. Chem. Commun. 2009, 7336.
(f) Sako, S.; Kurahashi, T.; Matsubara, S. Chem. Commun.
2011, 47, 6150.
(22) General Procedure for the Cross-Coupling of
Propargylic Bromide with Grignard Reagent
(7) (a) Searles, S.; Li, Y.; Nassim, B.; Robert Lopes, M.-T.;
Tran, P. T.; Crabbé, P. J. Chem. Soc., Perkin Trans. 1 1984,
747. (b) Kuang, J. Q.; Ma, S. M. J. Org. Chem. 2009, 74,
1763. (c) Kuang, J.; Ma, S. M. J. Am. Chem. Soc. 2010, 132,
1786. (d) Kitagaki, S.; Komizu, M.; Mukai, C. Synlett 2011,
1129.
(8) (a) Ogasawara, M.; Ikeda, H.; Nagano, T.; Hayashi, T.
J. Am. Chem. Soc. 2001, 123, 2089. (b) Fukuhara, K.;
Okamoto, S.; Sato, F. Org. Lett. 2003, 5, 2145.
(9) Myers, A. G.; Zheng, B. J. Am. Chem. Soc. 1996, 118, 4492.
(10) (a) Tanaka, K.; Otsubo, K.; Fuji, K. Synlett 1995, 993.
(b) Brummond, K. M.; Dingess, E. A.; Kent, J. L. J. Org.
Chem. 1996, 61, 6096.
Under an atmosphere of nitrogen, Ni(acac)2 (5.12 mg, 0.02
mmol), Ph3P (0.04 mmol), and THF (2 mL) were mixed in a
Schlenk flask. Shortly afterwards, aryl or alkyl Grignard
reagent (1.2 mmol) was added, and subsequently the
proparglic bromide was added. Then the reaction mixture
was stirred at r.t. for 4–6 h. After completion of the reaction,
the mixture was diluted with H2O (15 mL) and extracted
with Et2O (3 × 15 mL). The combined organic layers were
dried over anhydrous Na2SO4, filtered, and evaporated in
vacuum. The residue was subjected to flash column
chromatography on silica gel (hexane or EtOAc–hexane,
100:1) to afford the corresponding allene products 3.
Allenylbenzene (3aa):13e colorless oil; 1H NMR (400 MHz,
CDCl3): d = 7.31–7.19 (m, 5 H), 6.17 (t, J = 6.8 Hz, 1 H),
5.16 (d, J = 6.8 Hz, 2 H). 13C {1H} NMR (100 MHz, CDCl3):
d = 209.8, 133.9, 128.6, 126.9, 126.7, 93.9, 78.7. HRMS:
m/z calcd for C9H8: 116.0626; found: 116.0637 [M]+.
(11) Delouvrie, B.; Lacote, E.; Fensterbank, L.; Malacria, M.
Tetrahedron Lett. 1996, 40, 3565.
(12) (a) Tsuji, J.; Sugiura, T.; Yuhara, M.; Minami, I. Chem.
Commun. 1986, 922. (b) Tsuji, J.; Sugiura, T.; Minami, I.
Synthesis 1987, 603.
Synlett 2012, 23, 747–750
© Thieme Stuttgart · New York