Chemistry, ed. G. Wilkinson, F. G. A. Stone and E. W. Abel, Pergamon,
Oxford, vol. 12, 1995, ch. 5.1–5.5.
Hu¨ckel calculations further support the +2 oxidation state for
iron in 3 and the use of carbene rather than alkylidene
terminology for the present complexes. The tmtaa, which shows
the usual saddle shape conformation,7 has structural parameters
quite close to those reported for the other iron complexes.8
We thank the ‘Fonds National Suisse de la Recherche
Scientifique’ (Grant No. 20-46’590.96), Ciba Speciality Chem-
icals (Basel, Switzerland), and ‘Fondation Herbette’ (Univer-
sity of Lausanne, Switzerland) for financial support.
2 (a) D. Mansuy, M. Lange, J. C. Chottard, J. F. Bartoli, B. Chevrier and
R. Weiss, Angew. Chem., 1978, 90, 828; (b) P.J. Brothers and
J. P. Collman, Acc. Chem. Res., 1986, 19, 209; (c) D. Mansuy, Pure Appl.
Chem., 1987, 59, 759; (d) I. Artaud, N. Gregoire, J.-P. Battioni, D. Dupre
and D. Mansuy, J. Am. Chem. Soc., 1988, 110, 8714; (e) I. Artaud,
N. Gregoire, P. Leduc and D. Mansuy, J. Am. Chem. Soc., 1990, 112,
6899; (f) D. Mansuy and J. P. Mahy, in Metalloporphyrins Catalyzed
Oxidations, ed. F. Montanari and L. Casella, Kluwer, Dordrecht, 1994,
p. 175.
3 J. P. Collman, P. J. Brothers, L. McElwee-White, E. Rose and
L. J. Wright, J. Am. Chem. Soc., 1985, 107, 4570; J. P. Collman,
P. J. Brothers, L. McElwee-White and E. Rose, J. Am. Chem. Soc., 1985,
107, 6110.
4 H. Brand and J. Arnold, Coord. Chem. Rev., 1995, 140, 137; T. Aida and
S. Inoue, Acc. Chem. Res., 1996, 29, 39.
5 J. P. Collman, L. S. Hegedus, J. R. Norton and R. G. Finke, Principles
and Applications of Organotransition Metal Chemistry, University
Science Books, Mill Valley, CA, 1987.
6 (a) T. Boschi, S. Licoccia, R. Paolesse and P. Tagliatesta, Organ-
ometallics, 1989, 8, 330; (b) J.-P. Djukic, D. A. Smith, V. G. Young,
Jr. and L. K. Woo, Organometallics, 1994, 13, 3020.
7 Some leading references to the use of [tmtaa]22 as an ancillary ligand in
the organometallic chemistry of the early transition metals are: (a)
C. H. Jang, J. A. Ladd and V. L. Goedken, J. Coord. Chem., 1988, 18,
317; (b) S. De Angelis, E. Solari, E. Gallo, C. Floriani, A. Chiesi-Villa
and C. Rizzoli, Inorg. Chem., 1992, 31, 2520; (c) L. Giannini, E. Solari,
C. Floriani, A. Chiesi-Villa and C. Rizzoli, Angew. Chem., Int. Ed. Engl.,
1994, 33, 2204; (d) L. Giannini, E. Solari, S. De Angelis, T. R. Ward,
C. Floriani, A. Chiesi-Villa and C. Rizzoli, J. Am. Chem. Soc., 1995, 117,
5801; (e) D. G. Black, D. C. Swenson and R. F. Jordan, Organometallics,
1995, 14, 3539; (f) H. Schumann, Inorg. Chem., 1996, 35, 1808;
(g) G. I. Nikonov, A. J. Blake and P. Mountford, Inorg. Chem., 1997, 36,
1107.
8 (a) V. L. Goedken, J. J. Pluth, S. M. Peng and B. Bursten, J. Am. Chem.
Soc., 1976, 98, 8014; (b) M. C. Weiss, B. Bursten, S. M. Peng and
V. L. Goedken, J. Am. Chem. Soc., 1976, 98, 8021; (c) V. L. Goedken,
S. M. Peng, J. A. Molin-Norris and Y. Park, J. Am. Chem. Soc., 1976, 98,
8391; (d) M. C. Weiss and V. L. Goedken, Inorg. Chem., 1979, 18, 819;
(e) P. Berno, C. Floriani, A. Chiesi-Villa and C. Guastini, J. Chem. Soc.,
Dalton Trans., 1988, 1409; (f) P. Berno, C. Floriani, A. Chiesi-Villa and
C. Guastini, J. Chem. Soc., Dalton Trans., 1989, 551.
Footnotes and References
* E-mail: carlo.floriani@icma.unil.ch
† Preparation of 3: To a cooled (230 °C) THF solution (140 ml) of
[Fe(tmtaa)]·thf8a (1.79 g, 3.80 mmol) was added dropwise a THF solution
(40 ml) of diphenyldiazomethane (0.78 g, 4.0 mmol). When warmed to
room temperature the solution became red. Nitrogen gas was slowly given
off. After stirring for 2 d, the green solution was concentrated in vacuo (20
ml) and then hexane (15 ml) added. A green crystalline solid was obtained
(1.70 g, 75%). Crystals suitable for X-ray analysis were grown in toluene
(Found: C, 74.53; H, 5.77; N, 9.91. C35H32FeN4 requires C, 74.47; H, 5.71;
N, 9.92%). 1H NMR (200 MHz, C6D6, 25 °C): d 6.88–6.76 (m, 8 H),
6.35–6.33 (m, 10 H), 5.13 (s, 2 H), 2.12 (s, 12 H). 13C NMR (100.6 MHz,
C6D6, 25 °C): d 313.2 (C carbene), 166.6, 157.9, 149.3, 127.1, 124.8, 120.9,
120.5, 119.7, 107.3, 67.8, 25.8, 23.2.
‡ Crystal data for 3: C35H32FeN4·C7H8, M = 656.7, triclinic, space group
¯
P1, a = 11.670(3), b = 13.593(4), c = 11.234(3) Å, a = 106.72(2),
b = 96.21(2), g = 77.62(2)°, U = 1665.0(8) Å3, Z = 2, Dc = 1.310 g
cm23, F(000) = 692, Mo-Ka radiation (l = 0.7109 Å), m(Mo-Ka) = 4.87
cm21: crystal dimensions 0.08 3 0.72 3 0.85 mm. The structure was solved
by the heavy atom method and anisotropically refined for all the non-H
atoms. All the hydrogen atoms were located from difference Fourier maps
and introduced as fixed contributors in the last stage of refinement
(Uiso = 0.05 Å2). For 4428 unique observed reflections [I > 2s(I)]
collected at T = 133 K on a Rigaku AFC6S diffractometer (5 < 2q < 50°)
and corrected for absorption the final R is 0.059 (wR2 = 0.163 for the 5293
reflections having I > 0 used in the refinement). All calculations were
carried out on a QUANSAN Personal Computer equipped with an INTEL
PENTIUM processor. CCDC 182/644.
1 Transition Metal Carbene Complexes, VCH, Weinheim, 1983;
W. D. Wulff, in Advances in Metal–Organic Chemistry, ed. L. S.
Liebeskind, Jay, London, vol. 1, 1989, pp. 209; J. W. Herndon,
S. U. Tumer, L. A. McMullen, J. J. Matasi and W. F. K. Schnatter, in
Advances in Metal–Organic Chemistry, ed. L. S. Liebeskind, Jay,
London, vol. 3, 1994, pp. 51–95; Comprehensive Organometallic
9 P. E. Riley, R. E. Davis, N. T. Allison and W. M. Jones, Inorg. Chem.,
1982, 21, 1321; D. Bauer, P. Ha¨rter and E. Herdtweck, J. Chem. Soc.,
Chem. Commun., 1991, 829.
Received in Basel, Switzerland, 4th July 1997; 7/04736C
2298
Chem. Commun., 1997