Ph3CO
latter was then exposed to Ac2O in CH2Cl2 providing the
corresponding acetamide 23m (39%, 4 steps). Similar chem-
istry was employed for the preparation of epothilones 24a–c,
e–h (Scheme 2). Compound 24d was synthesized by selective
oxidation of 22 with TEMPO–bleach (90%), and subsequent
hydroxy protection, Wittig methylenation and deprotection
allowed access to 24k (49%, 3 steps). Iodide 24o was prepared
by selective tosylation of the primary hydroxy moiety of 22 and
subsequent displacement with NaI (72%). Alternatively, treat-
ment of 22 with DAST furnished fluoride 24j. Reaction of 23h
and 23l with methyl(trifluoromethyl)dioxirane provided, re-
spectively, the epoxy methyl ether 24h (20%) and the ethyl
analogue 24l (55%).
S
N
OSiMe2But
+
O
OSiMe2But
12
O
OSiMe2But
11
i
Ph3CO
Ph3CO
S
N
S
N
R1O
HO
+
(ca. 3:1)
OSiMe2But
OR3
R4
R4
OR2
14 R2 = SiMe2But, R4 = CH2OSiMe2But
O
OR2
O
Table 1 shows the tubulin binding5 and cytotoxicity proper-
ties of a selected number of the synthesized epothilones.
We thank Dr E. Hamel for a gift of purified tubulin and Dr P.
Giannakakou for the cell lines. This work was supported by
Novartis, the NIH, The Skaggs Institute for Chemical Biology,
the CaP CURE Foundation, and the Fulbright Commission
(M. R. V. F.).
13 R1 = H, R2 = R3 = SiMe2But, R4 = CH2OSiMe2But
15 R1 = R2 = R3 = SiMe2But, R4 = CH2OSiMe2But
16 R1 = R2 = R3 = SiMe2But, R4 = CH2OH
17 R1 = R2 = R3 = SiMe2But, R4 = CHO
ii
iii
iv
v
18 R1 = R2 = R3 = SiMe2But, R4 = CO2H
vi
19 R1 = R2 = SiMe2But, R3 = H, R4 = CO2H
vii
R1
R1
O
O
S
S
N
HO
HO
N
Footnotes and References
O
O
* E-mail: kcn@scripps.edu
† All new compounds exhibited satisfactory spectral and exact mass data.
O
OR2
20
3
O
O
OH
R
1 = CH2OCPh3, R3 = SiMe2But
viii
ix
xi
R1 = CH2OH, R2 = H
22
R
1 = CH2OH
1 G. Ho¨fle, N. Bedorf, H. Steinmetz, D. Schomburg, K. Gerth and H.
Reichenbach, Angew. Chem., Int. Ed. Engl., 1996, 35, 1567.
2 D. M. Bollag, P. A. McQueney, J. Zhu, O. Hensens, L. Koupal, J.
Liesch, M. Goetz, E. Lazarides and C. M. Woods, Cancer Res., 1995,
55, 2325.
3 R. J. Kowalski, P. Giannakakou and E. Hamel, J. Biol. Chem., 1997,
272, 2534.
4 S. B. Horwitz, J. Fant and P. B. Schiff, Nature, 1979, 277, 665.
5 K. C. Nicolaou, N. Winssinger, J. A. Pastor, S. Ninkovic, F. Sarabia, Y.
He, D. Vourloumis, Z. Yang, T. Li, P. Giannakakou and E. Hamel,
Nature, 1997, 387, 268.
6 D.-S. Su, D. Meng, P. Bertinato, A. Balog, E. J. Sorensen, S. J.
Danishefsky, Y.-H. Zheng, T.-C. Chou, L. He and S. B. Horwitz,
Angew. Chem., Int. Ed. Engl., 1997, 36, 757.
7 K. C. Nicolaou, S. Ninkovic, F. Sarabia, D. Vourloumis, Y. He, H.
Vallberg, M. R. V. Finlay and Z. Yang, J. Am. Chem. Soc., 1997, 119,
7974.
x
21 R1 = CH2OH, R3 = SiMe2But
23a R1 = CH2OAc, R2 = H
24a R1 = CH2OAc
xi,viii
xii,viii
xiii,viii
xiv
xii
24b R1 = CH2OC(O)But
24c R1 = CH2OBz
24d R1 = CHO
xiii
23b
23c R1 = CH2OBz, R2 = H
23d
1 = CHO,R2 = H
R
1 = CH2OC(O)But, R2 = H
xv
v
24e
R
1 = CO2H
R
v
xv
23e R1 = CO2H, R2 = H
23f R1 = CO2Me, R2 = H
24f R1 = CO2Me
24g R1 = CH2Cl
xv
xxvii
xxviii
xix
xvi,viii
1 = CH2Cl, R2 = H
1 = CH2OMe, R2 = H
24h
24j
R
R
1 = CH2OMe
1 = CH2F
23g
23h
R
xvii,viii
R
xviii,viii
xxvi,xx,iii
23i R1 = CH2OBn, R2 = H
23j
1 = CH2F, R2 = H
24k R1 = CH=CH2
24l R1 = Et
xxviii
xix,viii
R
xiv,xx,viii
xiv,xx,xxi,viii
xxii,xxix
23k R1 = CH=CH2, R2 = H
23l R1 = Et, R2 = H
24o R1 = CH2I
xxii,xxiii,viii
xiv,xxiv,viii
23m R1 = CH2NHAc, R2 = H
23n R1 = CH≡CH, R2 = H
8 A. Balog, D. Meng, T. Kamenecka, P. Bertinato, D.-S. Su, E. J.
Sorensen and S. J. Danishefsky, Angew. Chem., Int. Ed. Engl., 1996, 35,
2801; D. Meng, D.-S. Su, A. Balog, P. Bertinato, E. J. Sorensen, S. J.
Danishefsky, Y.-H. Zheng, T.-C. Chou, L. He and S. B. Horwitz, J. Am.
Chem. Soc., 1997, 119, 2733.
9 Z. Yang, Y. He, D. Vourloumis, H. Vallberg and K. C. Nicolaou,
Angew. Chem., Int. Ed. Engl., 1997, 36, 166; K. C. Nicolaou, F. Sarabia,
S. Ninkovic and Z. Yang, Angew. Chem., Int. Ed. Engl., 1997, 36,
525.
10 D. Schinzer, A. Limberg, A. Bauer, O. M. Bo¨hm, M. Cordes, Angew.
Chem., Int. Ed. Engl., 1997, 36, 523.
11 K. C. Nicolaou, Y. He, D. Vourloumis, H. Vallberg, F. Roschangar, F.
Sarabia, S. Ninkovic, Z. Yang and J. I. Trujillo, J. Am. Chem. Soc., 1997,
119, 7960.
Scheme 2 Reagents and conditions: i, LDA, THF, 0 °C, 15 min, then 12,
THF, 278 ? 260 °C, 1 h, then 11, THF, 278 °C; ii, ButMe2SiOSO2CF3,
2,6-lutidine, CH2Cl2, 0 °C, 2 h; iii, HF·pyridine, pyridine, THF, 0 ? 25 °C,
4 h; iv, (COCl)2, DMSO, Et3N, CH2Cl2, 278 ? 0 °C, 1.5 h; v, NaClO2,
Me2CNCHMe, NaH2PO4, ButOH–H2O (5:1), 25 °C, 2 h; vi, Bu4NF, THF,
25 °C, 8 h; vii, 2,4,6-Cl3C6H2COCl, Et3N, THF, 0 °C, 1 h, then add to
DMAP in toluene, 75 °C, 1 h; viii, 30% HF·pyridine (v/v), THF, 0 ? 25 °C,
24 h; ix, (+)-diethyl l-tartrate, Ti(OPri)4, ButOOH, 230 °C, 2 h; x,
camphorosulfonic acid, MeOH–CH2Cl2 (1:1), 0 ? 25 °C, 3 h; xi, Ac2O,
DMAP, EtOAc, 0 °C, 0.5 h; xii, ButCOCl, Et3N, DMAP, CH2Cl2, 0 °C, 0.5
h; xiii, BzCl, Et3N, DMAP, CH2Cl2, 0 °C, 0.5 h; xiv, MnO2, Et2O, 25 °C,
3 h; xv, CH2N2, Et2O, 0 °C; xvi, PPh3, CCl4, 75 °C, 24 h; xvii, NaH, MeI,
DMF, 0 °C, 1 h; xviii, NaH, BnBr, DMF, 0 ? 25 °C, 1 h; xix, DAST,
CH2Cl2, 278 ? 25 °C, 1 h; xx, Ph3P+CH3Br2, (Me3Si)2NLi, THF, 0 °C;
xxi, H2, Lindlar catalyst, EtOAc, room temp., 15 min.; xxii, TsCl, Et3N,
DMAP, CH2Cl2, 0 °C, 1 h; xxiii, NaN3, DMF, 25 °C, 10 h, then PPh3, THF,
60 °C, 8 h, then Ac2O, CH2Cl2, 10 min; xxiv, Me3SiCHN2, then BunLi,
THF, 278 ? 0 °C, 1 h; xxv, TEMPO (0.008 m, CH2Cl2), NaOCl (0.035 m,
5% aq. NaHCO3), aq. KBr (0.2 m), CH2Cl2, 0 °C, 0.5 h; xxvi, Me3SiCl,
Et3N, CH2Cl2, 0 ? 25 °C, 10 h; xxvii, PPh3, MeCN–CCl4 (1:3), 25 °C, 1
h; xxviii, methyl(trifluoromethyl)dioxirane, MeCN, 0 °C; xxix, NaI,
acetone, 25 °C, 10 h
12 Isolation and structure elucidation: G. Ho¨fle, personal communi-
cation.
13 K. C. Nicolaou, Y. He, F. Roschangar, N. P. King and D. Vourloumis,
Angew. Chem., in the press.
14 K. C. Nicolaou, H. Vallberg, N. P. King, F. Roschangar, Y. He, D.
Vourloumis and C. G. Nicolaou, Chem. Eur. J., in the press.
15 K. C. Nicolaou, F. Sarabia, M. R. V. Finlay, S. Ninkovic, N. P. King, D.
Vourloumis and Y. He, Chem. Eur. J., in the press.
16 A. Balog, P. Bertinato, D.-S. Su, D. Meng, E. J. Sorensen, S. J.
Danishefsky, Y-H. Zheng, T-C. Chou, L. He and S. B. Horwitz,
Tetrahedron Lett., 1997, 38, 4529.
17 K. C. Nicolaou, D. Vourloumis, T. Li, J. Pastor, N. Winssinger, Y. He,
S. Ninkovic, F. Sarabia, H. Vallberg, F. Roschangar, N. P. King, M. R.
V. Finlay, P. Giannakakou, P. Verdier-Pinard and E. Hamel, Angew.
Chem., Int. Ed. Engl., 1997, 36, 2097.
the usual desilylation conditions gave 23n (68%). The aldehyde
obtained from MnO2 oxidation of 21 (90%) was also subjected
to Wittig methylenation (85%) furnishing, after desilylation,
alkene 23k (85%). A similar sequence of reactions with this
aldehyde (Wittig methylation and hydrogenation followed by
desilylation) provided 23l. Conversion of 3 to the corresponding
tosylate, followed by displacement with NaN3 in DMF and
reduction with PPh3, furnished the required primary amine. The
18 D. Enders, A. Plant, D. Backhaus and U. Reinhold, Tetrahedron, 1995,
51, 10 699.
Received in Corvallis, OR, USA, 11th August 1997; 7/05845D
2344
Chem. Commun., 1997