2424
N. Ritter, P. Metz
LETTER
(7) Wilson, S. R.; Jernberg, K. M.; Mao, D. T. J. Org. Chem.
1976, 41, 3209.
OH
O
H
H
H
O
H
H
H
O
(8) (a) Lattanzi, A.; Sagulo, F.; Scettri, A. Tetrahedron:
Asymmetry 1999, 10, 2023. (b) Mulzer, J.; Berger, M.
Tetrahedron Lett. 1998, 39, 803. (c) Menzel, A.; Oehrlein,
R.; Griesser, H.; Wehner, V.; Jäger, V. Synthesis 1999, 1691.
(9) Mengel, A.; Reiser, O. Chem. Rev. 1999, 99, 1191.
(10) The relative configuration of 8 and 9 was elucidated by a
NOESY experiment with acetonide A (Figure 2) prepared
from 8/9 by desilylation (40% HF, MeCN, r.t., 90% from 8,
78% from 9) and subsequent acetalization of the resulting
single diol (acetone, PPTS, r.t., 91%).
a
b
19
O
O
21
22
c
O
OH
H
H
H
O
H
H
H
O
NOE
NOE
d
H
H
O
O
O
O
24
23
NOE
e
A
Figure 2
OH
H
H
(11) Upon changing the lactaldehyde protecting group to
TBDPS,8b silyl migration was slightly diminished, while
complete Felkin–Anh selectivity of addition was
maintained. However, the corresponding products were less
readily separated. With MOM protection8c the diastereo-
selectivity of addition was too low for synthetic utilization.
Transmetalation from Li to Al (Me2AlCl) or Mg (MgBr2
etherate) gave less 8/9.
(12) (a) Wilson, S. R.; Mao, D. T.; Jernberg, K. M.; Ezmirly, S.
T. Tetrahedron Lett. 1977, 18, 2559. (b) Shing, T. K. M.;
Zhu, X. Y.; Mak, T. C. W. Chem. Commun. 1996, 2369.
(13) Han, Y.; Liao, S.; Qiu, W.; Cai, C.; Hruby, V. J. Tetrahedron
Lett. 1997, 38, 5135.
OH
Ref 2
1–5
OH
25
Scheme 3 Reagents and conditions: a) CBr4, MeOH, reflux, 94%;
b) PCC, CH2Cl2, r.t., 97%; c) DBU, CH2Cl2, r.t., 69% (96% on re-
covered s.m.); d) ethinylmagnesium bromide, MgBr2 etherate,
Et2O, –70 °C to –40 °C, 58% (66% on recovered s.m.); e) LiAlH4,
Et2O, r.t., 85%.
(2) (a) Nicolaou, K. C.; Ohshima, T.; Hosokawa, S.; van Delft,
F. L.; Vourloumis, D.; Xu, J. Y.; Pfefferkorn, J.; Kim, S. J.
Am. Chem. Soc. 1998, 120, 8674. (b) Nicolaou, K. C.; Xu, J.
Y.; Kim, S.; Pfefferkorn, J.; Ohshima, T.; Vourloumis, D.;
Hosokawa, S. J. Am. Chem. Soc. 1998, 120, 8661.
(3) Chen, X.-T.; Bhattacharya, S. K.; Zhou, B.; Gutteridge, C.
E.; Pettus, T. R. R.; Danishefsky, S. J. J. Am. Chem. Soc.
1999, 121, 6563.
(4) For recent synthetic studies toward eleuthesides, see:
(a) Winkler, J. D.; Quinn, K. J.; MacKinnon, C. H.; Hiscock,
S. D.; McLaughlin, E. C. Org. Lett. 2003, 5, 1805.
(b) Kaliappan, K. P.; Kumar, N. Tetrahedron Lett. 2003, 44,
379; and references cited therein.
(14) The relative configuration was verified by detailed 2D NMR
experiments.
(15) (a) Jones, G. A.; Paddon-Row, M. N.; Sherburn, M. S.;
Turner, C. I. Org. Lett. 2002, 4, 3789. (b) Tantillo, D. J.;
Houk, K. N.; Jung, M. E. J. Org. Chem. 2001, 66, 1938.
(16) Saito, A.; Ito, H.; Taguchi, T. Org. Lett. 2002, 4, 4619.
(17) Attempted IMDA reactions of alcohol 17 and the
corresponding ketone [DMSO, (COCl)2, Et3N, CH2Cl2,
–50 °C to r.t., 84% from 17] under similar conditions turned
out to be much less efficient (<25% yield).
(18) Lee, A. S.-Y.; Hu, Y.-J.; Chu, S.-F. Tetrahedron 2001, 57,
2121.
(19) Alcohol 21 was also obtained by desilylation of 13 (40% HF,
MeCN, r.t., 98%).
(5) Plietker, B. Ph.D. Thesis; Technische Universität Dresden:
Germany, 1999.
(20) (a) Ihara, M.; Suzuki, S.; Taniguchi, N.; Fukumoto, K. J.
Chem. Soc., Perkin Trans. 1 1993, 2251. (b) Bartlett, P. A.;
Meadows, J. D.; Ottow, E. J. Am. Chem. Soc. 1984, 106,
5304.
(6) (a) Ishikawa, T.; Senzaki, M.; Kadoya, R.; Morimoto, T.;
Miyake, N.; Izawa, M.; Saito, S. J. Am. Chem. Soc. 2001,
123, 4607. (b) Jung, M. E.; Huang, A.; Johnson, T. W. Org.
Lett. 2000, 2, 1835. (c) Kim, P.; Nantz, M. H.; Kurth, M. J.;
Olmstead, M. M. Org. Lett. 2000, 2, 1831.
(21) Compound 25: [a]D25 +41.6 (c 0.6, CHCl3); ref.2b [a]D
25
+43.5 (c 0.2, CHCl3).
Synlett 2003, No. 15, 2422–2424 © Thieme Stuttgart · New York