10.1002/chem.201806159
Chemistry - A European Journal
COMMUNICATION
P. S. Baran, J. Am. Chem. Soc. 2010, 132, 13194; c) Y. Fujiwara, J. A.
Dixon, F. O’Hara, E. D. Funder, D. D. Dixon, R. A. Rodriguez, R. D.
Baxter, B. Herlé, N. Sach, M. R. Collins, Y. Ishihara, P. S. Baran,
Nature 2012, 492, 95; d) F. O’Hara, D. G. Blackmond, P. S. Baran, J.
Am. Chem. Soc. 2013, 135, 12122; e) G. A. Molander, V. Colombel, V.
A. Braz, Org. Lett. 2011, 13, 1852.
amides 28, 29, 37 and 38, which are easily prepared from
commercially
available
starting
materials
using
our
carbamoylation methodology, but would be harder to access via
traditional amide bond forming methods as the necessary
carboxylic acids are not readily available.
In order to challenge the method we developed, we decided
to test substrates known to be incompatible even when using
state-of-the-art amide bond forming reactions. Normally,
substrates that bear either free amines or several carboxylic
acids are particularly problematic in traditional amide couplings
and would lead to the formation of oligomers among other side-
products. However in our case, no electrophilic carboxylic acid
intermediates are formed, allowing us to isolate compounds 39-
41 without the use of protecting groups.[31] This unusual
functional group tolerance might find application in the late-stage
functionalization of drug candidates, allowing for the introduction
of amide groups to complex molecules in a single step under
mild reaction conditions.
[11] F. Coppa, F. Fontana, E. Lazzarini, F. Minisci, Heterocycles 1993, 36,
2687.
[12] Light mediated C–H carbamoylation of heterocycles has been recently
reported but is limited to the addition of non-functionalized carbamoyl
groups (Csp2-CO-NH2).[14f]
[13] a) D. A. DiRocco, K. Dykstra, S. Krska, P. Vachal, D. V. Conway, M.
Tudge, Angew. Chem. Int. Ed. 2014, 53, 4802; b) G.-X. Li, C. A.
Morales-Rivera, Y. Wang, F. Gao, G. He, P. Liu, G. Chen, Chem. Sci.
2016, 7, 6407; c) R. A. Garza-Sanchez, A. Tlahuext-Aca, G. Tavakoli, F.
Glorius, ACS Catal. 2017, 7, 4057; d) J. K. Matsui, D. N. Primer, G. A.
Molander, Chem. Sci. 2017, 8, 3512; e) J. Jin, D. W. C. MacMillan,
Nature 2015, 525, 87; f) P. Nuhant, M. S. Oderinde, J. Genovino, A.
Juneau, Y. Gagné, C. Allais, G. M. Chinigo, C. Choi, N. W. Sach, L.
Bernier, Y. M. Fobian, M. W. Bundesmann, B. Khunte, M. Frenette, O.
O. Fadeyi, Angew. Chem. Int. Ed. 2017, 56, 15309; g) J. R. Klauck
Felix, J. James Michael, F. Glorius, Angew. Chem. Int. Ed. 2017, 56,
12336; h) J. K. Matsui, G. A. Molander, Org. Lett. 2017, 19, 950.
[14] a) D. Elad, J. Rokach, J. Org. Chem. 1964, 29, 1855; b) L. Friedman, H.
Shechter, Tetrahedron Lett. 1961, 2, 238; c) G. Pattenden, S. J.
Reynolds, J. Chem. Soc., Perkin Trans. 1 1994, 379; d) F. Minisci, F.
Recupero, C. Punta, C. Gambarotti, F. Antonietti, F. Fontana, G. F.
Pedulli, Chem. Commun. 2002, 2496; e) T. Caronna, C. Gambarotti, L.
Palmisano, C. Punta, F. Recupero, Chem. Commun. 2003, 2350; f) Y.
Zhang, K. B. Teuscher, H. Ji, Chem. Sci. 2016, 7, 2111.
In summary, we report a visible light photoredox-mediated
reaction, which enables direct C–H carbamoylation of
heterocycles by means of
a radical addition to a non-
2
functionalized Csp center. Of particular importance is the
tolerance of this reaction protocol to functional groups such as
carboxylic acids and unprotected amines that are typically
incompatible with standard amide coupling reagents. By allowing
the direct formation of N-alkyl and N,N’-dialkyl amide
functionalized heterocycles in a rapid, robust and transition
metal free manner, we believe that this non-obvious bond
disconnection should find rapid adoption in both academia and
industry.
[15] a) H. Wang, L. N. Guo, S. Wang, X.-H. Duan, Org. Lett. 2015, 17, 3054;
b) Q. Jiang, J. Jia, B. Xu, A. Zhao, C.-C. Guo, J. Org. Chem. 2015, 80,
3586; c) M. Li, C. Wang, P. Fang, H. Ge, Chem. Commun. 2011, 47,
6587; d) Q.-F. Bai, C. Jin, J.-Y. He, G. Feng, Org. Lett. 2018, 20, 2172.
[16] W. F. Petersen, R. J. K. Taylor, J. R. Donald, Org. Lett. 2017, 19, 874.
[17] A. Joshi-Pangu, F. Lévesque, H. G. Roth, S. F. Oliver, L.-C. Campeau,
D. Nicewicz, D. A. DiRocco, J. Org. Chem. 2016, 81, 7244.
Acknowledgements
[18] pH measurement shows that the reaction conditions employed are
close to be at constant pH (t = 0 min, pH 2.8, t = 90 min (end of
reaction) pH 2.6). At this pH, N-heterocycles are predominantly
protonated (pKa 4–6), whereas oxamic acids (pKa 0-2) and persulfate
(pKa -6.0; 0.2) are mostly present as salts. Sulfate generated during the
reaction act most likely as buffer (pKa –3.0, 2.0).
The authors thank Sean Bowen for NMR support. The authors
also thank A. El Marrouni, J. Balsells-Padros, E. Phillips, C.
Nawrat, A. Neel, D. Lehnherr, D. Thaisrivongs, D. DiRocco and
L.-C. Campeau for helpful discussions and critical insights.
[19] Á. Gutiérrez-Bonet, C. Remeur, J. K. Matsui, G. A. Molander, J. Am.
Chem. Soc. 2017, 139, 12251.
Keywords: carbamoylation, C-H functionalization, photoredox
[20] M. A. Cismesia, T. P. Yoon, Chem. Sci. 2015, 6, 5426.
[21] In the absence of light or heat, no reaction between potassium
persulfate and potassium piperidine oxamate 8 was observed (Table 1,
Entry 5).
catalysis, heterocycles, alkyl oxamate.
[1]
T. Wieland, M. Bodanszky in The World of Peptides, Springer-Verlag
[22] L. Guillemard, F. Colobert, J. Wencel-Delord, Adv. Synth. Catal.,
doi:10.1002/adsc.201800692.
Berlin Heidelberg, 1991.
[2]
A. Greenberg, C. Breneman, J. Liebman in The amide linkage
:
selected structural aspects in chemistry, biochemistry, and materials
science, Wiley-Interscience, 2000.
[23] Mechanistic probes (e.g. quantum yield measurements or
luminescence quenching experiments) could not be used in our case
because reaction media is not homogeneous and these methods are
sensitive to light diffraction.
[3]
[4]
J. S. Carey, D. Laffan, C. Thomson, M. T. Williams, Org. Biomol. Chem.
2006, 4, 2337.
[24] This reaction paradigm might also take place even in the presence of
photocatalyst, but the lower amount of side products obtained in the
presence of the latter suggest that this mechanism is disfavored and/or
slower.
A. K. Ghose, V. N. Viswanadhan, J. J. Wendoloski, J. Comb. Chem.
1999, 1, 55.
[5]
[6]
[7]
D. G. Brown, J. Boström, J. Med. Chem. 2016, 59, 4443.
A. El-Faham, F. Albericio, Chem. Rev. 2011, 111, 6557.
a) R. M. de Figueiredo, J.-S. Suppo, J.-M. Campagne, Chem. Rev.
2016, 116, 12029; b) H. Noda, M. Furutachi, Y. Asada, M. Shibasaki, N.
Kumagai, Nat. Chem. 2017, 9, 571.
[25] A. McNally, C. K. Prier, D. W. C. MacMillan, Science 2011, 334, 1114.
[26] Starting material (oxamate ester): 93% ee; 27-R: 93% ee (see SI).
[27] S.-S. Jew, H.-G. Park, Chem. Commun. 2009, 7090.
[28] M. S. S. Palanki, P. E. Erdman, L. M. Gayo-Fung, G. I. Shevlin, R W.
Sullivan, M. J. Suto, M. E. Goldman, L. J. Ransone, B. L. Bennett, A. M.
Manning, J. Med. Chem. 2000, 43, 3995.
[8]
[9]
For a recent example of an amidation reaction focusing on the C-C
bond formation, see: S. Zheng, D. N. Primer, G. A. Molander, ACS
Catal. 2017, 7, 7957.
[29] A. Golovchinskaya, Zh.Obshch. Khim. 1948, 18, 2129.
[30] B. Yao, C.-L. Deng, Y. Liu, R.-Y. Tang, X.-G. Zhang, J.-H. Li, Chem.
Commun. 2015, 51, 4097.
a) J. Wencel-Delord, F. Glorius, Nature Chem. 2013, 5, 369; b) T.
Cernak, K. D. Dykstra, S. Tyagarajan, P. Vachal, S. W. Krska, Chem.
Soc. Rev. 2016, 45, 546.
[31] Previously reported Ag-catalyzed Minisci carbamoylation conditions did
not work with free amine containing heterocycle 41.
[10] a) M. A. J. Duncton, Med. Chem. Commun. 2011, 2, 1135; b) I. B.
Seiple, S. Su, R. A. Rodriguez, R. Gianatassio, Y. Fujiwara, A. L. Sobel,
This article is protected by copyright. All rights reserved.